

3503 BYNG ROAD WINDSOR, ONTARIO

PROJECT NO: 24-065

DATED: MAY 8, 2025

Contents

1.	INTRODUCTION	1
2.	EXISTING CONDITIONS	1
2.1	STORM SEWER	2
2.2	Sanitary Sewer	2
2.3	Watermain	2
3.	PROPOSED CONDITION	2
3.1	STORM SEWER AND STORMWATER MANAGEMENT	3
3.2	Sanitary Sewer	4
3.3	Watermain	5
4.	WATER QUALITY, EROSION AND SEDIMENT CONTROL	5
4.1	Water Quality Unit	5
4.2	EROSION AND SEDIMENT CONTROL	5
5	CONCLUSION	5

FIGURES

Figure 1: Pre-Development Condition	1
Figure 2: Post-Development Condition	2
TABLES	
Table 1: Infiltration Parameters	3
Table 2: Pre-Development Condition	3
Table 3: Rainfall intensities used for PCSWMM Modelling	4
Table 4: Post-Development Flows.	4
APPENDICES	
APPENDIX A: Background Information	1
APPENDIX B: Hydrograph Model Results – Pre and Post Development Conditions	2

1. INTRODUCTION

Baird AE was retained to prepare a functional servicing report for the proposed development located on southwest corner of Lappan Avenue and Byng Road in Windsor, Ontario. This report addresses stormwater management quantity and quality control, along with storm, sanitary and water connection requirements to accommodate the construction of a new development containing a 6-unit residential apartment, parking area & landscape open space area.

This report and the associated design are prepared in accordance with the Windsor-Essex Regional Stormwater Management Standards Manual (WERSTM) and the development manual published by the Corporation of the City of Windsor to ensure compliance with local design standards and development regulations. Moreover, it outlines sediment and erosion control measures.

2. EXISTING CONDITIONS

The proposed site is located at the southwest corner of Lappan Avenue and Byng Road in Windsor, Ontario. Current condition of site includes detached residential lot, driveway and landscape open space area, as can be seen in *Figure 1* provided below. According to the soil type mapping tool provided by the Essex Region Conservation Authority (ERCA), the underlying soil type for this site is Brookstone Clay, which belongs to hydrologic soil class D, as per the WERSTM. The existing condition of the site, as depicted in *Figure 1*, was deemed to be "good condition" and thus the run-off co-efficient applied in the pre-development analysis was selected as C=0.47 to reflect that condition.

Figure 1: Pre-Development Condition

2.1 Storm Sewer

- Existing site has storm tie in connection into storm sewer located in Byng Road.
- Existing 975 mm Ø storm sewer is located in Byng Road R.O.W.

2.2 Sanitary Sewer

- Existing 250 mm Ø Sanitary sewer is located in Byng Road R.O.W.
- Existing 375 mm Ø Sanitary sewer is located in Lappan Avenue R.O.W.

2.3 Watermain

- Existing 200mm watermain is located in Byng Road R.O.W.
- Existing fire hydrants are located on northeast corner of Lappan Avenue and Byng Road.

3. PROPOSED CONDITION

As shown on the Site plan in *Figure 2*, the site will consist of a 6-unit residential apartment, parking area & landscape open space area.

LAPPAN AVE.

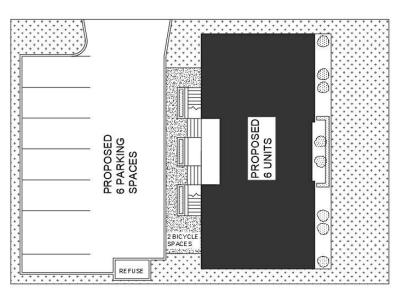


Figure 2: Post-Development Condition

BYNG RD.

3.1 Storm Sewer and Stormwater Management

The storm servicing and stormwater management criteria for this development are based on the requirements of the City of Windsor and ERCA. The findings are summarized below, and detailed calculations are provided in *Appendix A*.

It has been determined that the post-development peak flow for all storm events from the development will be stored on site and run off will be released with 5-year pre-development release rate into the existing 975 mm Ø storm sewer located on Byng Road R.O.W.

Proposed development has soil Classification of Brookstone Clay (Hydrological Group D) as per ERCA GIS Mapping. Soil infiltration was accounted for in our analysis using the Horton Infiltration Method. The Horton infiltration parameters used, as prescribed by the WERSWM, are provided in *Table 1*.

Table 1: Infiltration Parameters

	Attribute	Brookston Clay Hydro Group (D)
	Max. Infil. Rate (normal) (mm/hr)	25
Horton's	Min. Infil. Rate (mm/hr)	0.5
Infiltration	Decay constant (1/hr)	4.0
	Drying Time (days)	7.0

Table 2: Pre-Development Condition

Surface	Area	Run-off
Hard Surface (Existing House & Driveway)	248	0.90
Grass Area	407	0.20
Total	655	0.47

Storm events that are applied to proposed development Hydrograph modelling are outlined below in *Table 3*. These models were used to determine vulnerable points and assess conformity to municipal standards.

Storm EventStorm DurationRainfall Depth2-year SCS Type-II Storm24 Hours53.40 mm5-year SCS Type-II Storm24 Hours68.00 mm100-year SCS Type-II Storm24 Hours108.00 mmUrban Stress Test24 Hours150.00 mm

Table 3: Rainfall intensities used for Hydrograph Modelling

As per pre-development 2 and 5-year release rate, site will be allowed to release up to 6 L/s and 7 L/s.

The proposed development consists of a multi-storey 6-units residential building, parking area & landscape open space area. The post-development analysis of the site was completed using the SCS method and the Hydraflow Hydrographs Extension in Autodesk Civil 3D. Based on the proposed development layout, as shown in the drawings included in Appendix A, the post-development curve number (CN) for the development was assumed to be 84.

During the minor storm event, the flow will be conveyed by storm sewers. Major storm events, such as 100-year storm event and Urban Stress Test, will be managed by surface storage and backyard swales. To maintain allowable release rate, a proposed 150 mm Ø storm service connection will tie-in to existing 975 mm Ø storm sewer and allowable to release up to 5 L/s during the major storm event.

According to the SCS II 24-hour post-development analysis of the site, as provided in Appendix B, the restricted flows for the site shall be as provided in Table 4 below.

Restricted Flows Un-Restricted Flows Storm Return Period (m3/s)(m3/s)0.005 0.002 2-year 0.003 5-year 0.008 0.016 0.005 100-year 0.007 UST 0.025

Table 4: Post-Development Flows

3.2 Sanitary Sewer

The proposed development will outlet into an existing 250 mm Ø sanitary sewer located in Byng Road R.O.W. with 150 mm Ø sanitary service connection.

3.3 Watermain

The proposed development will tie-in existing 200 mm Ø watermain located in Byng Road R.O.W. with 50 mm Ø water connection.

4. WATER QUALITY, EROSION AND SEDIMENT CONTROL

4.1 Water Quality Unit

A water quality unit will be installed on the outlet sewer for 70 % TSS removal efficiency. MECP requirements for normal long-term suspended solids removal is stated as 70 percent TSS removal efficiency for 91 percent of annual flow. The OGS manhole will be installed just before the system outlets into the municipal sewer.

4.2 Erosion and Sediment Control

The erosion and sediment control measures for the site will be included in the tender documents, and will include the following:

- Silt fence is to be erected before grading begins on the property to protect downstream areas from the migration of sediment in overland flow.
- All disturbed areas will be stabilized by restoration of vegetative ground cover as soon as possible.
- Filter fabric will be placed over the drainage grates.
- Provide construction entrance features (mud mat) at the existing roadway to minimize the transport of sediment on construction vehicle tires off-site.

Additional erosion and sediment control notes will be provided in the tender documents.

5. CONCLUSION

Stormwater Management – The stormwater management strategy for the proposed development aligns with the City of Windsor and ERCA requirements. The design effectively manages runoff, maintaining a 5-year pre-development release rate while addressing flooding risks and ensuring adequate water quality control. The minimum finished floor elevation is set to mitigate flood risks from the 100-year storm event. Additionally, erosion and sediment control measures will be implemented to safeguard the site during construction and beyond. This report demonstrates that urban stress test storm event is managed by the surface storage.

Sanitary Sewer – The proposed development will connect to the existing 250 mm Ø sanitary sewer that is located in the Byng Road R.O.W. These flows are designed to integrate seamlessly with the existing infrastructure, ensuring efficient wastewater management.

Watermain – The proposed development will support domestic water supply by installing a 50 mm diameter watermain connected to the existing 200 mm Ø watermain located in Byng Road R.O.W. Existing fire hydrants are located on the northeast corner of Lappan Avenue and Byng Road.

We trust the foregoing is satisfactory and will allow for the review and approval of the stormwater, sanitary and watermain servicing design and engineering drawings for this development. If you have questions or require additional information, please contact Baird AE at your earliest convenience.

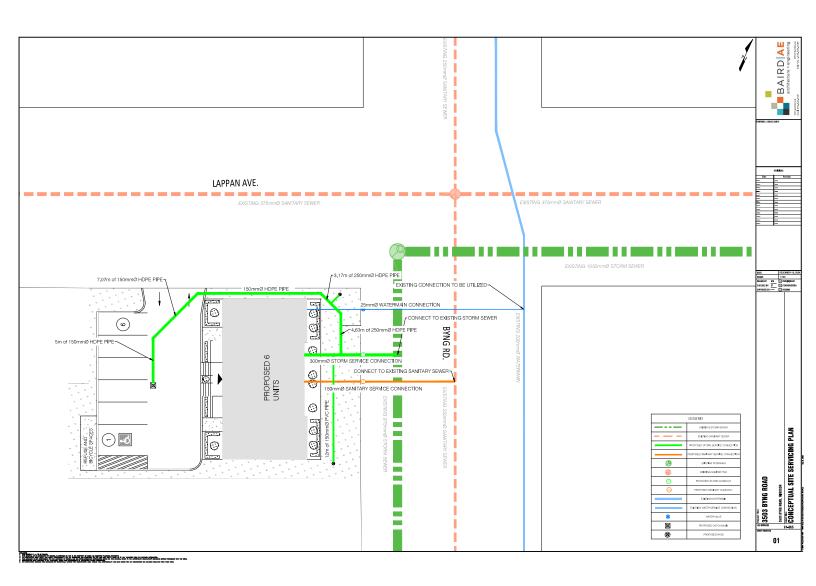
All of which is respectfully submitted.

Reviewed By:

Shurjeel Tunio, P.Eng. Senior Engineer

Prepared By:

Melissa Reyes, B.Eng., E.I.T. Civil Designer


BAIRD AE INC. 1350 PROVINCIAL ROAD, UNIT 700, WINDSOR, ONTARIO N8W 5W1

6

APPENDIX A: Background Information

! Table 3.2.2.7 – Minimum C Values for Standard 5-Year Sewer Design

Land Use	C value
Asphalt, concrete, roof areas	0.95
Gravel	0.70
Grass – sandy soil	0.15
Grass – clay soil	0.20
Residential – Single family	0.60
Residential – Single family (lot size 500 m² or less)	0.70
Residential – Semi-detached	0.70
Residential – Townhouse / Row housing	0.80
Industrial / Commercial	0.90

Table 3.2.1.1 – IDF Curve Parameters

B		Return Period (Years)					
Parameters	2	5	10	25	50	100	
a	854	1259	1511	1851	2114	2375	
b	7.0	8.8	9.5	10.2	10.6	11.0	
С	0.818	0.838	0.845	0.852	0.858	0.861	

! Table 3.7.4.1 – Typical Manning's Roughness Coefficients for Overland Flow

Surface	n
Smooth Asphalt/Concrete	0.013
Cultivated Soils - Residue Cover < 20%	0.06
Cultivated Soils - Residue Cover > 20%	0.17
Range (natural)	0.13
Grass - Short Prairie	0.15
Grass - Dense	0.24
Woods - Light Underbrush	0.40
Woods - Dense Underbrush	0.80

! Table 3.7.7.5 – Typical Horton Infiltration Parameters

Parameter				
rudillelei	A	В	С	D
fmax, dry (mm/hr)	250	200	125	75
fmax, normal (mm/hr)	250	80	50	25
fmin (mm/hr)				
clay	7.6	3.8	1.3	0.5
loam	9.5	5.7	2.5	1.0
sand	11.4	7.6	3.8	1.3
k (1/hr)	4	4	4	4

Table A-3.7.7 - Soil Types in Essex County

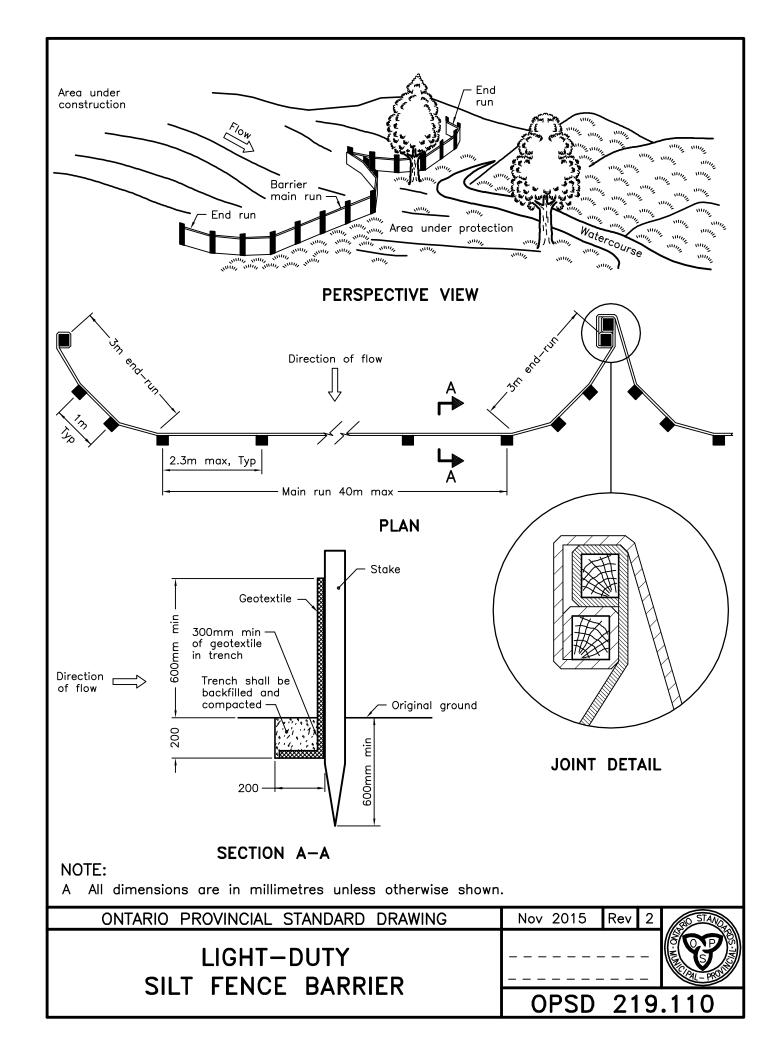
Texture	Symbol	Name	Acreage	Hydrologic Group
	Вс	Brookston Clay	250,000	D
12.745-5120-521	Toc	Toledo Clay	17,500	D
	Cc	Clyde Clay	2,500	D
Clay Soils	Jc	Jeddo Clay	3,500	D
	Cac	Caistor Clay	13,500	С
	Pc	Perth Clay	9,000	С
	Pcl	Perth Clay Loam	8,000	С
Clay Loams	Cacl	Caistor Clay Loam	2,500	С
	Bcl	Brookston Clay Loam	30,000	D
Silt Loam	Tos	Brookston Clay 250,0 Toledo Clay 17,50 Clyde Clay 2,50 Jeddo Clay 3,50 Caistor Clay 13,50 Perth Clay 9,00 Perth Clay Loam 8,00 Caistor Clay Loam 2,50 Brookston Clay Loam 30,00 Toledo Silt Loam 1,00 Burford Loam 3,70 Burford Loam Shallow Phase 5,30 Harrow Loam 4,00 Farmington Loam 2,00 Parkhill Loam 5,00	1,000	D
	Bg	Burford Loam	3,700	A
	Bg-s	Burford Loam Shallow Phase	5,300	Α
2	HI	Harrow Loam	4,000	A
Loams	FI	Farmington Loam	2,000	В
	PI	Parkhill Loam	5,000	С
	P-r	Parkhill Loam Red Sand Spot Phase	5,000	С

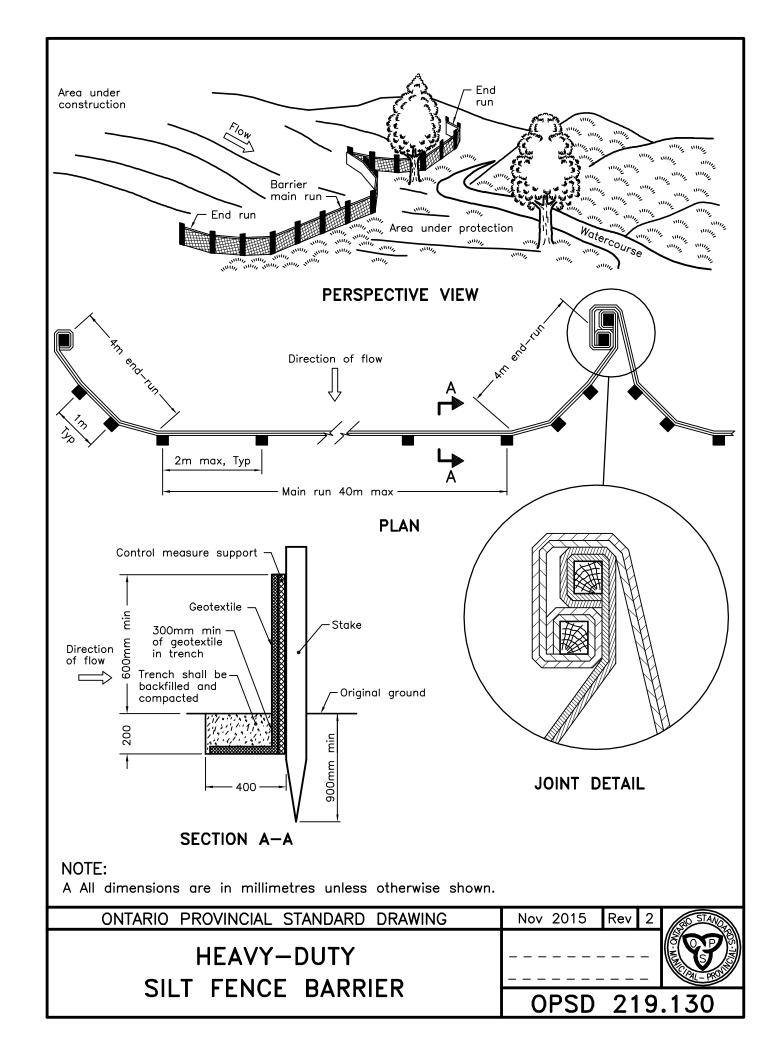
5-YEAR DESIGN STORMS

		CHICAG	O 4-HOUR		
		•	= 49.5 mm		
Time	5min Rain	Time	10min Rain	Time	20min Rain
h:mm	mm/hr	h:mm	mm/hr	h:mm	mm/hr
0:00	2.44	0:00	2.51	0:00	2.66
0:05	2.58	0:10	2.82	0:20	3.53
0:10	2.73	0:20	3.24	0:40	5.34
0:15	2.91	0:30	3.82	1:00	11.61
0:20	3.12	0:40	4.67	1:20	75.35
0:25	3.36	0:50	6.02	1:40	20.75
0:30	3.65	1:00	8.54	2:00	9.59
0:35	3.99	1:10	14.69	2:20	6.07
0:40	4.41	1:20	38.85	2:40	4.47
0:45	4.92	1:30	107.72	3:00	3.55
0:50	5.59	1:40	29.51	3:20	2.95
0:55	6.46	1:50	16.12	3:40	2.54
1:00	7.66	2:00	10.93	4:00	0.00
1:05	9.42	2:10	8.25		
1:10	12.20	2:20	6.62		
1:15	17.18	2:30	5.53	Time	30min Rain
1:20	28.20	2:40	4.76	h:mm	mm/hr
1:25	64.52	2:50	4.18	0:00	2.86
1:30	139.58	3:00	3.73	0:30	4.84
1:35	60.83	3:10	3.37	1:00	13.11
1:40	35.06	3:20	3.08	1:30	58.69
1:45	23.95	3:30	2.83	2:00	8.60
1:50	17.96	3:40	2.63	2:30	4.82
1:55	14.28	3:50	2.45	3:00	3.39
2:00	11.81	4:00	0.00	3:30	2.64
2:05	10.06			4:00	0.00
2:10	8.75				1 0.00
2:15	7.74	Time	15min Rain		
2:20	6.94	h:mm	mm/hr		
2:25	6.29	0:00	2.58		
2:30	5.76	0:15	3.13		
2:35	5.30	0:30	4.02		
2:40	4.92	0:45	5.66		
2:45	4.59	1:00	9.76		
2:50	4.30	1:15	26.72		
2:55	4.05	1:30	88.40		
3:00	3.83	1:45	18.73		
3:05	3.63	2:00	10.21		
3:10	3.45	2:15	6.99		
3:15	3.29	2:30	5.33		
3:20	3.14	2:45	4.31		
3:25	3.01	3:00	3.64		
3:30	2.89	3:15	3.15		
3:35	2.78	3:30	2.78		
3:40	2.67	3:45	2.49		
3:45	2.58	4:00	0.00		
3:50	2.49				
3:55	2.41				
4:00	0.00				

100-YEAR DESIGN STORMS

			6O 4-HOUR = 81.6 mm		
Time	5min Rain	Time	10min Rain	Time	20min Rain
h:mm	mm/hr	h:mm	mm/hr	h:mm	mm/hr
0:00	3.71	0:00	3.83	0:00	4.09
0:05	3.94	0:10	4.35	0:20	5.54
0:10	4.20	0:20	5.05	0:40	8.65
0:15	4.50	0:30	6.02	1:00	19.77
0:20	4.85	0:40	7.47	1:20	123.48
0:25	5.25	0:50	9.83	1:40	36.02
0:30	5.73	1:00	14.28	2:00	16.15
0:35	6.31	1:10	25.26	2:20	9.92
0:40	7.03	1:20	67.16	2:40	7.13
0:45	7.92	1:30	172.68	3:00	5.56
0:50	9.07	1:40	51.34	3:20	4.57
0:55	10.59	1:50	27.82	3:40	3.88
1:00	12.72	2:00	18.55	4:00	0.00
1:05	15.84	2:10	13.75		0.00
1:10	20.81	2:20	10.87		
1:15	29.71	2:30	8.97	Time	30min Rain
1:20	49.12	2:40	7.63	h:mm	mm/hr
1:25	108.91	2:50	6.63	0:00	4.41
1:30	218.23	3:00	5.87	0:30	7.78
1:35	103.42	3:10	5.26	1:00	22.45
1:40	60.97	3:20	4.77	1:30	97.06
1:45	41.72	3:30	4.37	2:00	14.39
1:50	31.11	3:40	4.03	2:30	7.74
1:55	24.53	3:50	3.74	3:00	5.30
2:00	20.12	4:00	0.00	3:30	4.04
2:05	16.98	4.00	0.00	4:00	0.00
2:10	14.65		-	4.00	0.00
2:15	12.86	Time	15min Rain		
2:20	11.44	h:mm	mm/hr		
2:25	10.30	0:00	3.95		
			+		
2:30 2:35	9.36 8.58	0:15 0:30	4.87 6.36		
2:40		0:45	9.19		
	7.91 7.34	1:00	16.45		
2:45					
2:50	6.85	1:15 1:30	46.45 143.67		
2:55	6.42				
3:00	6.04	1:45	32.45		
3:05	5.70	2:00	17.25		
3:10	5.40	2:15	11.53		
3:15	5.13	2:30	8.62		
3:20	4.88	2:45	6.87		
3:25	4.66	3:00	5.71		
3:30	4.46	3:15	4.89		
3:35	4.27	3:30	4.28		
3:40	4.10	3:45	3.81		
3:45	3.95	4:00	0.00		
3:50	3.80				
3:55	3.67				
4:00	0.00				


SCS TYPE II 24-HOUR DESIGN STORMS


		Unit Rainfall	100-Year	Rural Stress Test	5-Year
		Depth = 1 mm	Depth = 108 mm	Depth = 150 mm	Depth = 68.0 mm
Time	Rain	2hour Rain	2hour Rain	2hour Rain	2hour Rain
h:mm	%	mm/hr	mm/hr	mm/hr	mm/hr
0:00	0	0.000	0.00	0.00	0.00
2:00	2	0.010	1.08	1.50	0.68
4:00	3	0.015	1.62	2.25	1.02
6:00	3	0.015	1.62	2.25	1.02
8:00	4	0.020	2.16	3.00	1.36
10:00	6	0.030	3.24	4.50	2.04
12:00	48	0.240	25.92	36.00	16.32
14:00	16	0.080	8.64	12.00	5.44
16:00	4	0.030	3.24	4.50	2.04
18:00	3	0.020	2.16	3.00	1.36
20:00	3	0.015	1.62	2.25	1.02
22:00	2	0.015	1.62	2.25	1.02
0:00	0	0.010	1.08	1.50	0.68

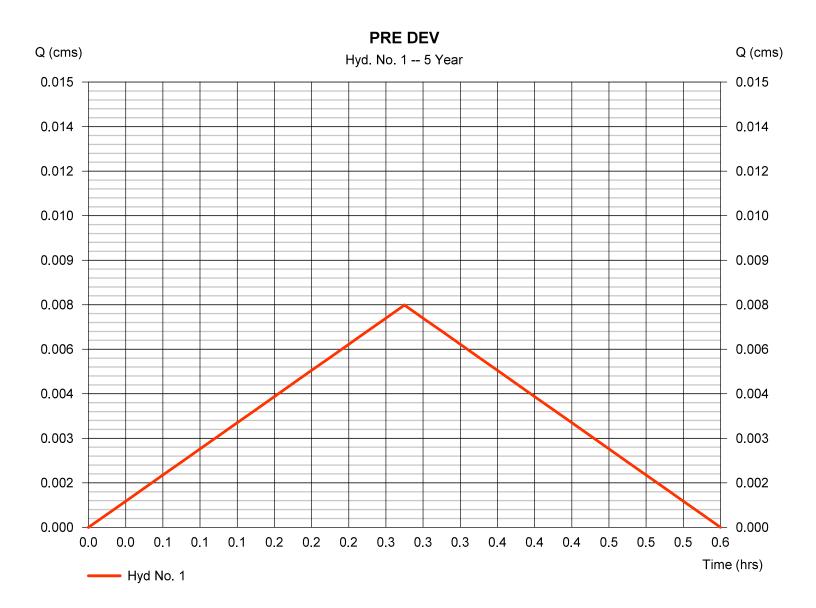
V2 URBAN STRESS TEST STORM

CHICAGO 100-YEAR 24-HOUR (108 mm) + UNIFORM DISTRIBUTION OF ADDITIONAL 42 mm Depth = 108 mm + 42 mm = 150 mm

Depth = 108 mm + 42 mm = 150 mm									
Time	15min Rain	Time	15min Rain						
h:mm	mm/hr	h:mm	mm/hr						
0:00	2.41	12:15	4.42						
0:15	2.43	12:30	4.24						
0:30	2.45	12:45	4.08						
0:45	2.47	13:00	3.94						
1:00	2.49	13:15	3.82						
1:15	2.51	13:30	3.71						
1:30	2.53	13:45	3.61						
1:45	2.56	14:00	3.52						
2:00	2.59	14:15	3.44						
2:15	2.61	14:30	3.37						
2:30	2.65	14:45	3.31						
2:45	2.68	15:00	3.25						
3:00	2.71	15:15	3.19						
3:15	2.75	15:30	3.14						
3:30	2.80	15:45	3.09						
3:45	2.84	16:00	3.05						
4:00	2.89	16:15	3.01						
4:15	2.95	16:30	2.97						
4:30	3.01	16:45	2.93						
4:45	3.09	17:00	2.90						
5:00	3.17	17:15	2.87						
5:15	3.26	17:30	2.84						
5:30	3.36	17:45	2.81						
5:45	3.49	18:00	2.78						
6:00	3.63	18:15	2.76						
6:15	3.80	18:30	2.73						
6:30	4.01	18:45	2.71						
6:45	4.27	19:00	2.69						
7:00	4.61	19:15	2.67						
7:15	5.05	19:30	2.65						
7:30	5.66	19:45	2.63						
7:45	6.56	20:00	2.61						
8:00	8.04	20:15	2.59						
8:15	10.84	20:30	2.58						
8:30	18.04	20:45	2.56						
8:45	48.06	21:00	2.54						
9:00	145.42	21:15	2.53						
9:15	34.36	21:30	2.52						
9:30	19.10	21:45	2.50						
9:45	13.36	22:00	2.49						
10:00	10.42	22:15	2.48						
10:15	8.66	22:30	2.47						
10:30	7.50	22:45	2.45						
10:45	6.67	23:00	2.44						
11:00	6.06	23:15	2.43						
11:15	5.58	23:30	2.42						
11:30	5.20	23:45	2.41						
11:45	4.90	0:00	0.00						
12:00	4.64								

APPENDIX B: HYDROGRAPH Model Results – Pre-Development And Post-Development Conditions

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024


Wednesday, 12 / 18 / 2024

Hyd. No. 1

PRE DEV

Hydrograph type Peak discharge = 0.007 cms= Rational Storm frequency Time to peak = 5 yrs $= 0.28 \, hrs$ Time interval = 1 min Hyd. volume = 7.6 cumDrainage area Runoff coeff. = 0.47*= 0.070 hectare Tc by TR55 $= 17.00 \, \text{min}$ Intensity = 82,633 mm/hr

IDF Curve = WINDSOR A.IDF Asc/Rec limb fact = 1/1

^{*} Composite (Area/C) = $[(0.025 \times 0.90) + (0.041 \times 0.20)] / 0.070$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

PRE DEV

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>		
Sheet Flow Manning's n-value Flow length (m) Two-year 24-hr precip. (mm) Land slope (%)	= 0.150 = 32.0 = 53.40 = 1.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00				
Travel Time (min)	= 16.58	+	0.00	+	0.00	=	16.58		
Shallow Concentrated Flow Flow length (m) Watercourse slope (%) Surface description Average velocity (m/s)	= 0.00 = 0.00 = Unpaved =0.00	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00				
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00		
Channel Flow X sectional flow area (sqm) Wetted perimeter (m) Channel slope (%) Manning's n-value Velocity (m/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015				
Flow length (m)	({0})0.0		0.0		0.0				
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00		
Total Travel Time, Tc									

Hydraflow Rainfall Report

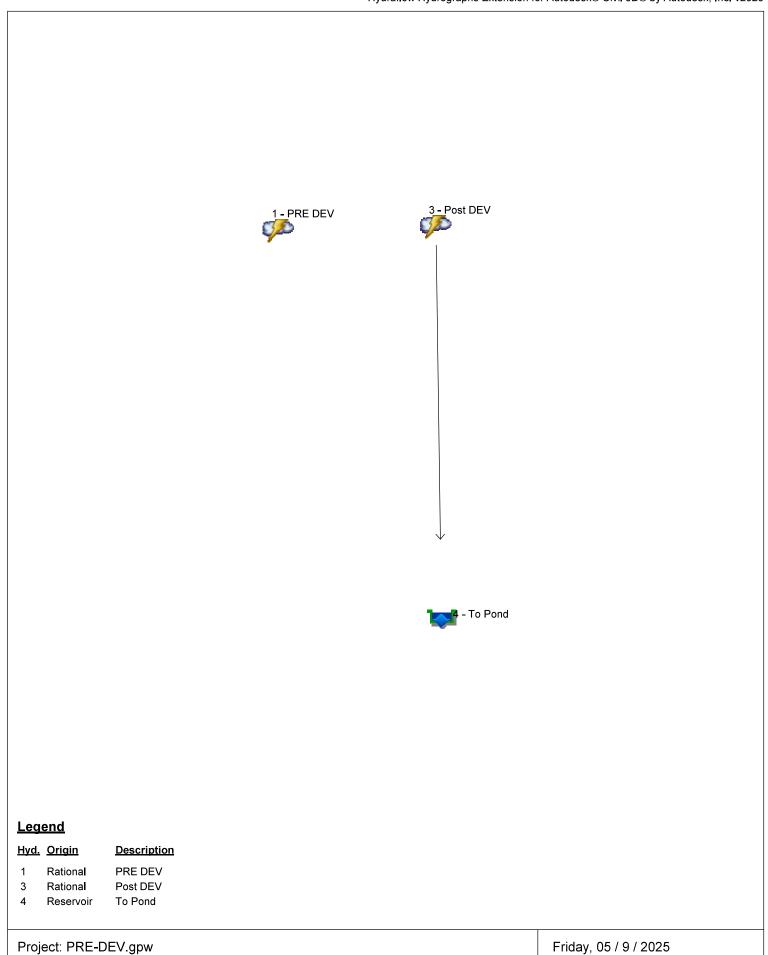
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Wednesday, 12 / 18 / 2024

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	0.0000	0.0000	0.0000							
2	84.9450	17.7800	2.0745							
3	0.0000	0.0000	0.0000							
5	127,4621	22,6060	2.1355							
10	148.3482	23.8760	2.1354							
25	182.0652	25.6540	2.1545							
50	211.5120	26.9240	2.1797							
100	240.0359	28.1940	2.1925							
	1									

File name: WINDSOR A.IDF

Intensity = $B / (Tc + D)^E$


Return													
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60	
1	0	0	0	0	0	0	0	0	0	0	0	0	
2	112	84	68	58	50	44	40	37	34	31	29	27	
3	0	0	0	0	0	0	0	0	0	0	0	0	
5	139	108	88	75	66	59	53	48	45	41	39	36	
10	158	123	101	86	76	68	61	56	52	48	45	42	
25	182	143	118	101	89	80	72	66	61	56	53	49	
50	200	158	131	112	99	88	80	73	67	62	58	55	
100	218	173	144	124	109	97	88	80	74	69	64	60	

Tc = time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp

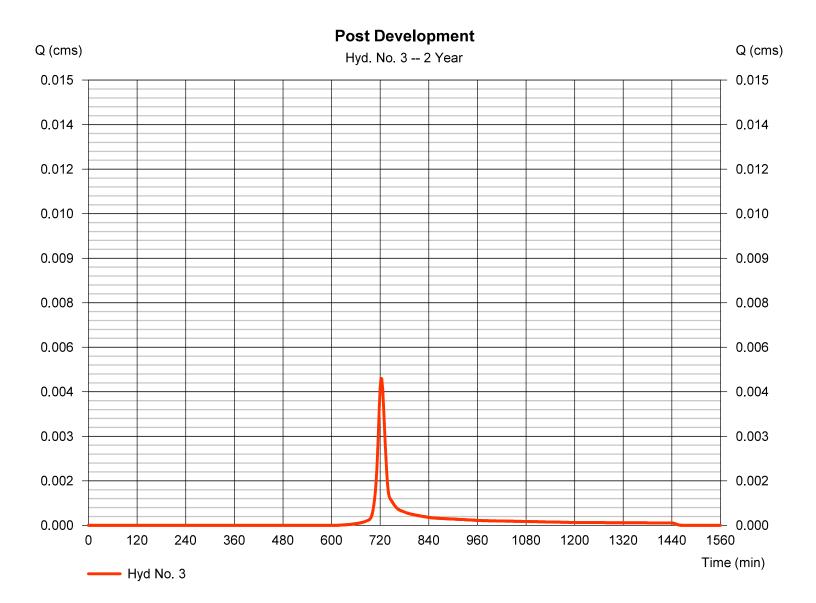
	Rainfall Precipitation Table (mm)								
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
SCS 24-hour	32	53	0	68	78	90	99	108	
SCS 6-Hr	0	0	0	0	0	0	0	0	
Huff-1st	0	0	0	0	0	0	0	0	
Huff-2nd	0	0	0	0	0	0	0	0	
Huff-3rd	0	0	0	0	0	0	0	0	
Huff-4th	0	0	0	0	0	0	0	0	
Huff-Indy	0	0	0	0	0	0	0	0	
Custom	0	0	0	0	0	0	0	0	

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Friday, 05 / 9 / 2025

Watershed Model Schematic	1
2 - Year	
Hydrograph Reports	2
Hydrograph ReportsHydrograph No. 3, SCS Runoff, Post Development	2
Hydrograph No. 4, Reservoir, To Pond	3
Pond Report - <new pond=""></new>	4
5 - Year Hydrograph Reports Hydrograph No. 3, SCS Runoff, Post Development Hydrograph No. 4, Reservoir, To Pond	5 5 6
100 - Year	
Hydrograph Reports	7
Hydrograph No. 3, SCS Runoff, Post Development	7
Hydrograph No. 4, Reservoir, To Pond	8
IDF Report	9


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

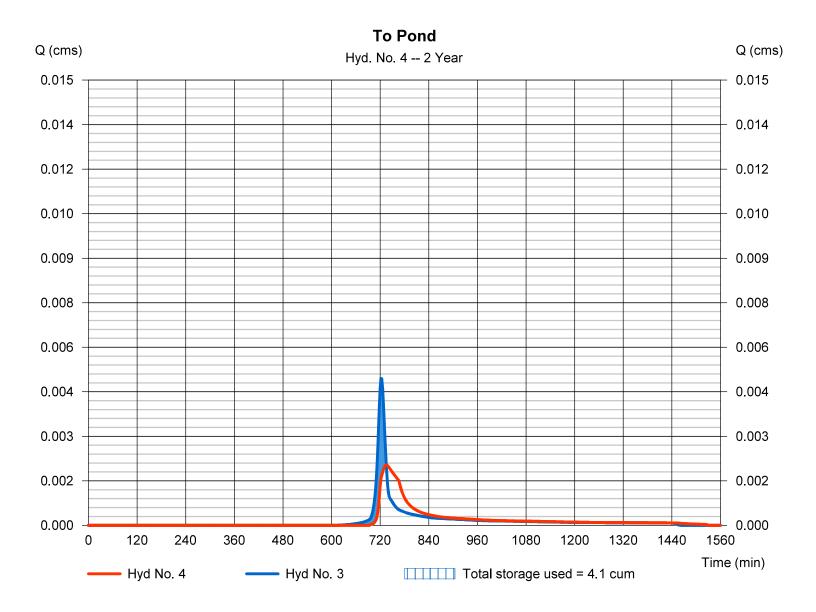
Friday, 05 / 9 / 2025

Hyd. No. 3

Post Development

Hydrograph type = SCS Runoff Peak discharge = 0.005 cmsStorm frequency Time to peak = 2 yrs= 722 min Time interval = 2 min Hyd. volume = 14.2 cum Drainage area = 0.070 hectare Curve number = 84 Basin Slope = 0.5 % Hydraulic length $= 0 \, \text{m}$ Tc method Time of conc. (Tc) = 15.00 min = User = 53.40 mm Total precip. Distribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Friday, 05 / 9 / 2025

Hyd. No. 4

To Pond

Hydrograph type Peak discharge = 0.002 cms= Reservoir Storm frequency Time to peak = 2 yrs= 736 min Time interval = 2 min Hyd. volume = 13.9 cumInflow hyd. No. Max. Elevation = 3 - Post Development $= 184.51 \, \mathrm{m}$ = <New Pond> Reservoir name Max. Storage = 4.1 cum

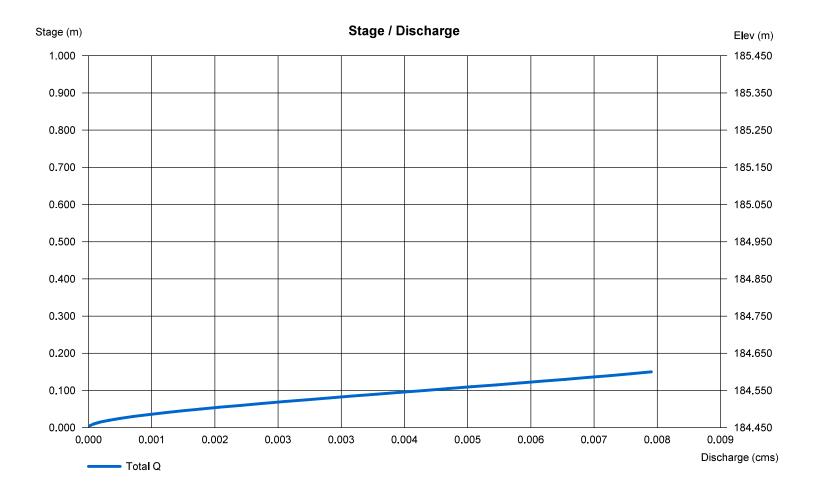
Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Friday, 05 / 9 / 2025

Pond No. 1 - <New Pond>

Pond Data

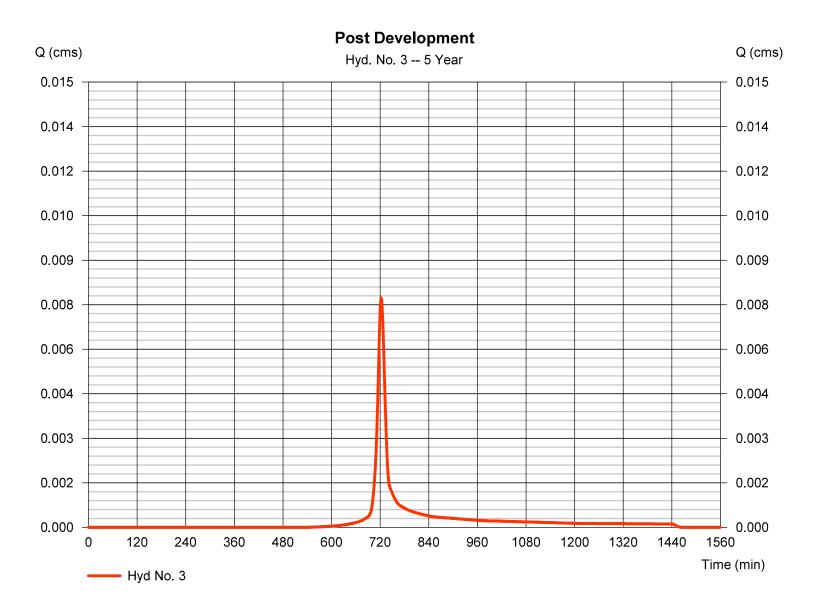

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 184.450 m

Stage / Storage Table

Stage (m)	Elevation (m)	Contour area (sqm)	Incr. Storage (cum)	Total storage (cum)
0.00	184.45	04	0.0	0.0
0.05	184.50	120	2.4	2.4
0.10	184.55	240	8.8	11.2
0.15	184.60	404	15.9	27.2

Culvert / Orifice Structures Weir Structures [D] [B] [PrfRsr] [A] [B] [C] [A] [C] Rise (mm) = 200.00 0.00 0.00 0.00 Crest Len (m) = 0.000 0.000 0.000 0.000 = 200.00 0.00 0.00 Crest El. (m) = 0.0000.000 0.000 0.000 Span (mm) 0.00 No. Barrels = 1 0 0 Weir Coeff. = 3.333.33 3.33 3.33 = 184.450 0.000 0.000 0.000 Invert El. (m) Weir Type = ---= 5.000 0.000 0.000 0.000 Length (m) Multi-Stage = No Νo Nο Nο = 0.200.00 0.00 n/a Slope (%) N-Value = .013 .013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(cm/hr) = 0.000Orifice Coeff. (by Wet an alti-Stage No Νo No = n/aTW Elev. (m) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

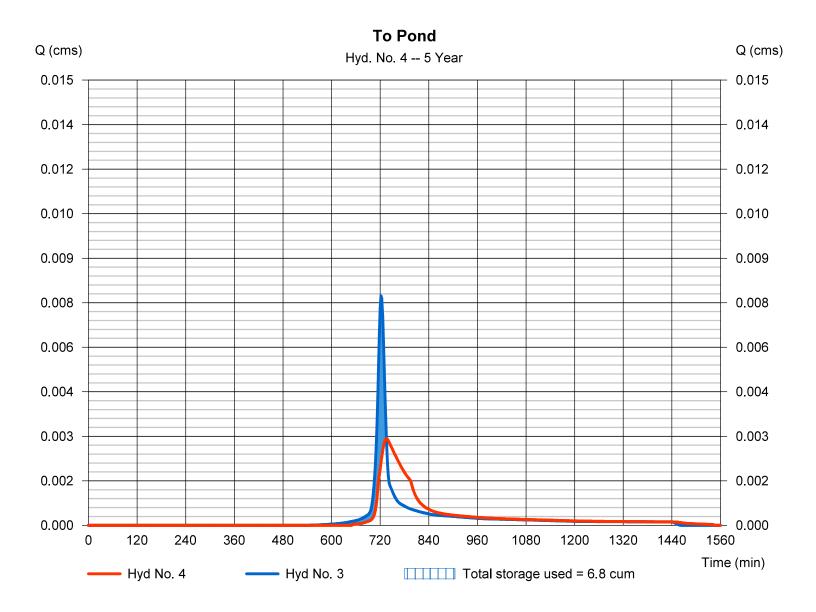
Friday, 05 / 9 / 2025

Hyd. No. 3

Post Development

Hydrograph type = SCS Runoff Peak discharge = 0.008 cmsStorm frequency Time to peak = 5 yrs= 722 min Time interval = 2 min Hyd. volume = 21.8 cum Drainage area = 0.070 hectare Curve number = 84 Basin Slope Hydraulic length = 0.5 % = 0 mTc method Time of conc. (Tc) = 15.00 min = User Total precip. $= 68.00 \, \text{mm}$ Distribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

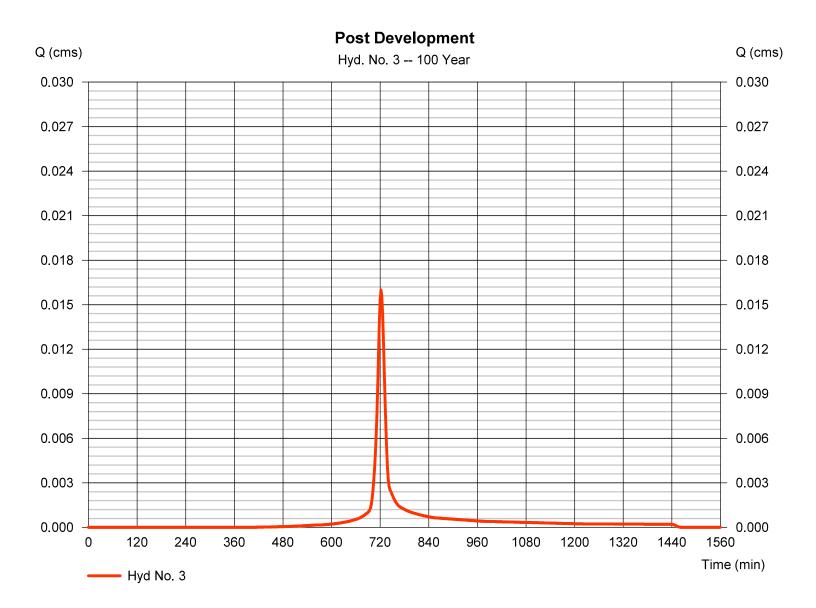

Friday, 05 / 9 / 2025

Hyd. No. 4

To Pond

Hydrograph type Peak discharge = 0.003 cms= Reservoir Storm frequency Time to peak = 5 yrs= 736 min Time interval = 2 min Hyd. volume = 21.5 cumInflow hyd. No. Max. Elevation = 3 - Post Development $= 184.52 \, \mathrm{m}$ = <New Pond> Reservoir name Max. Storage = 6.8 cum

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

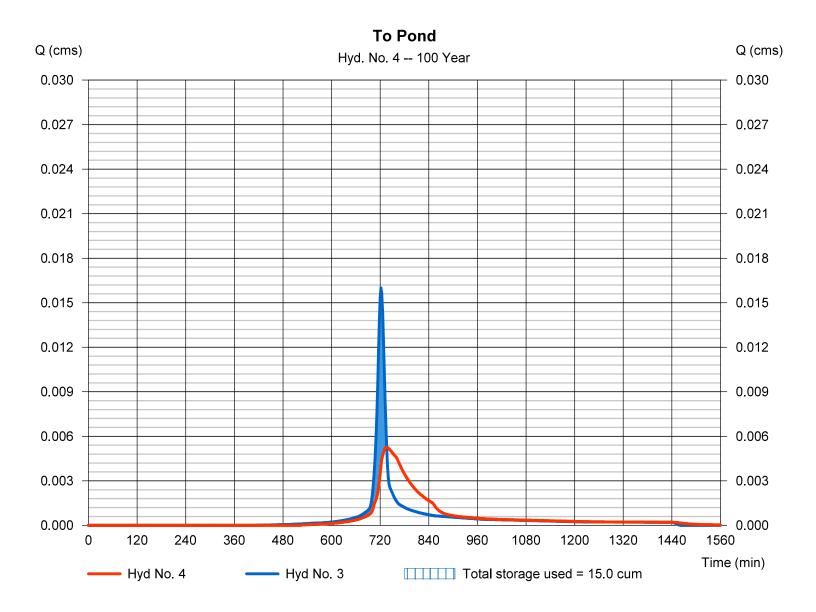
Friday, 05 / 9 / 2025

Hyd. No. 3

Post Development

Hydrograph type = SCS Runoff Peak discharge = 0.016 cmsStorm frequency Time to peak = 100 yrs= 722 min Time interval = 2 min Hyd. volume = 45.0 cumDrainage area = 0.070 hectare Curve number = 84 Basin Slope Hydraulic length = 0.5 % $= 0 \, \text{m}$ Tc method Time of conc. (Tc) = 15.00 min = User Total precip. = 108.00 mm Distribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Friday, 05 / 9 / 2025

Hyd. No. 4

To Pond

Hydrograph type Peak discharge = 0.005 cms= Reservoir Storm frequency Time to peak = 100 yrs= 736 min Time interval = 2 min Hyd. volume = 44.7 cumInflow hyd. No. Max. Elevation = 3 - Post Development $= 184.56 \, \mathrm{m}$ = <New Pond> Reservoir name Max. Storage = 15.0 cum

Storage Indication method used.

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Friday, 05 / 9 / 2025

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	0.0000	0.0000	0.0000							
2	84.9450	17.7800	2.0745							
3	0.0000	0.0000	0.0000							
5	127,4621	22,6060	2.1355							
10	148.3482	23.8760	2.1354							
25	182.0652	25.6540	2.1545							
50	211.5120	26.9240	2.1797							
100	240.0359	28.1940	2.1925							

File name: WINDSOR A.IDF

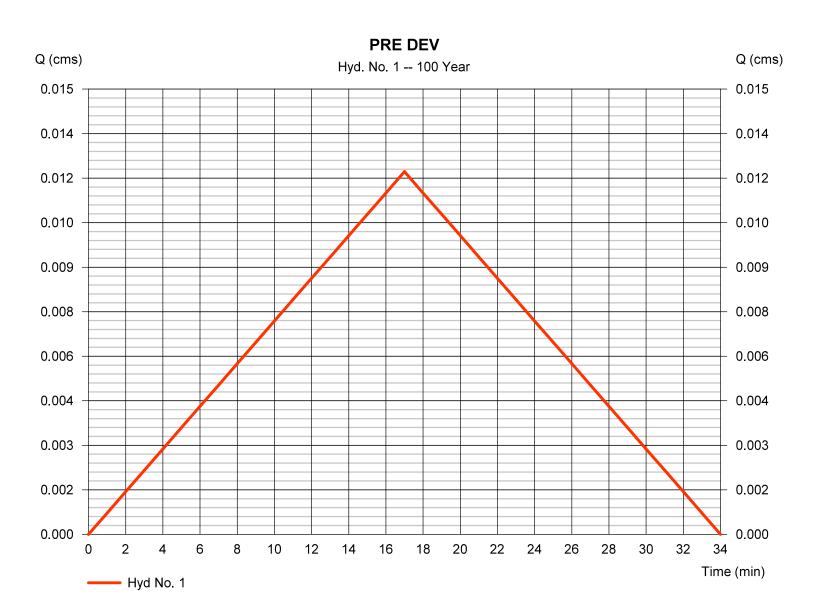
Intensity = $B / (Tc + D)^E$

Return												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0	0	0	0	0	0	0	0	0	0	0	0
2	112	84	68	58	50	44	40	37	34	31	29	27
3	0	0	0	0	0	0	0	0	0	0	0	0
5	139	108	88	75	66	59	53	48	45	41	39	36
10	158	123	101	86	76	68	61	56	52	48	45	42
25	182	143	118	101	89	80	72	66	61	56	53	49
50	200	158	131	112	99	88	80	73	67	62	58	55
100	218	173	144	124	109	97	88	80	74	69	64	60

Tc = time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp

	Rainfall Precipitation Table (mm)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	32	53	0	68	78	90	99	108		
SCS 6-Hr	0	0	0	0	0	0	0	0		
Huff-1st	0	0	0	0	0	0	0	0		
Huff-2nd	0	0	0	0	0	0	0	0		
Huff-3rd	0	0	0	0	0	0	0	0		
Huff-4th	0	0	0	0	0	0	0	0		
Huff-Indy	0	0	0	0	0	0	0	0		
Custom	0	0	0	0	0	0	0	0		


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Friday, 05 / 9 / 2025

Hyd. No. 1

PRE DEV

Hydrograph type Peak discharge = 0.012 cms= Rational Storm frequency Time to peak = 100 yrs= 17 min Time interval = 1 min Hyd. volume = 12.5 cumDrainage area Runoff coeff. = 0.47*= 0.070 hectare Tc by TR55 $= 17.00 \, \text{min}$ Intensity = 134.823 mm/hr **IDF** Curve = WINDSOR A.IDF Asc/Rec limb fact = 1/1

^{*} Composite (Area/C) = $[(0.025 \times 0.90) + (0.041 \times 0.20)] / 0.070$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

PRE DEV

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>		
Sheet Flow Manning's n-value Flow length (m) Two-year 24-hr precip. (mm) Land slope (%)	= 0.150 = 32.0 = 53.40 = 1.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00				
Travel Time (min)	= 16.58	+	0.00	+	0.00	=	16.58		
Shallow Concentrated Flow Flow length (m) Watercourse slope (%) Surface description Average velocity (m/s)	= 0.00 = 0.00 = Unpaved =0.00	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00				
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00		
Channel Flow X sectional flow area (sqm) Wetted perimeter (m) Channel slope (%) Manning's n-value Velocity (m/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015				
Flow length (m)	({0})0.0		0.0		0.0				
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00		
Total Travel Time, Tc									

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Friday, 05 / 9 / 2025

= 0.025 cms

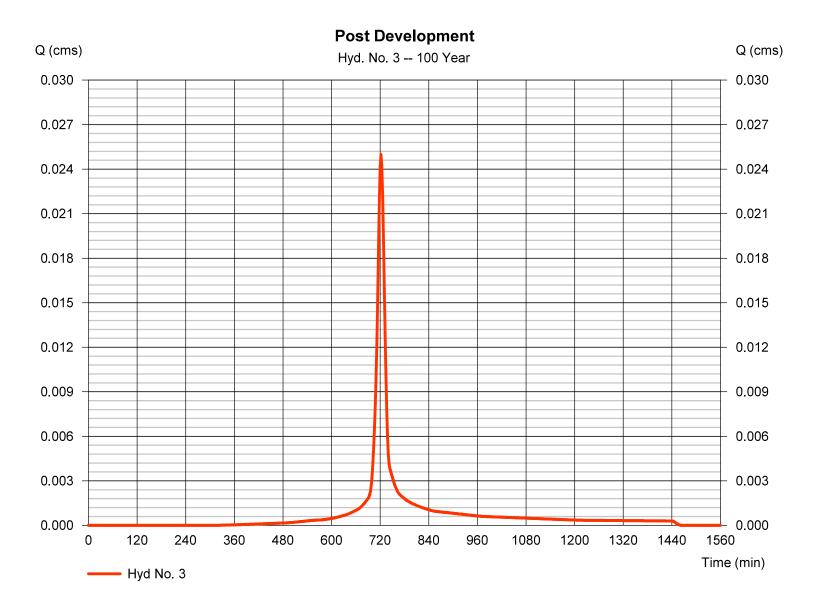
= 722 min

= 84

= 0 m

= 484

= 71.2 cum


= 15.00 min

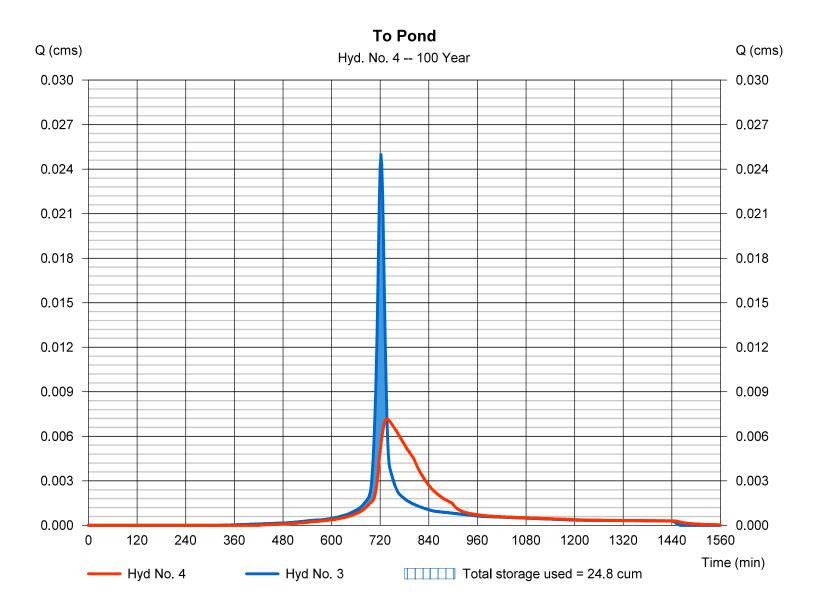
= Type II

Hyd. No. 3

Post Development

Hydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 100 yrsTime interval = 2 min Hyd. volume Drainage area = 0.070 hectare Curve number Basin Slope Hydraulic length = 0.5 % Tc method Time of conc. (Tc) = User Total precip. = 150.00 mm Distribution Storm duration = 24 hrs Shape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Friday, 05 / 9 / 2025

Hyd. No. 4

To Pond

Hydrograph type Peak discharge = 0.007 cms= Reservoir Storm frequency Time to peak = 100 yrs= 736 min Time interval = 2 min Hyd. volume = 70.9 cumInflow hyd. No. Max. Elevation = 3 - Post Development $= 184.59 \, \mathrm{m}$ = <New Pond> Reservoir name Max. Storage = 24.8 cum

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Friday, 05 / 9 / 2025

Pond No. 1 - <New Pond>

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 184.450 m

Stage / Storage Table

Stage (m)	Elevation (m)	Contour area (sqm)	Incr. Storage (cum)	Total storage (cum)
0.00	184.45	04	0.0	0.0
0.05	184.50	120	2.4	2.4
0.10	184.55	240	8.8	11.2
0.15	184.60	404	15.9	27.2

Culvert / Orifice Structures					Weir Structures				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (mm)	= 200.00	0.00	0.00	0.00	Crest Len (m)	= 0.000	0.000	0.000	0.000
Span (mm)	= 200.00	0.00	0.00	0.00	Crest El. (m)	= 0.000	0.000	0.000	0.000
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (m)	= 184.450	0.000	0.000	0.000	Weir Type	=			
Length (m)	= 5.000	0.000	0.000	0.000	Multi-Stage	= No	No	No	No
Slope (%)	= 0.20	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(cm/hr)	= 0.000			
y Wet an Manuiti-Stage	= n/a	No	No	No					
J					TW Elev. (m)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

