

Lakefront Heights Inc.

Official Plan and Zoning By-Law Amendments

Functional Servicing Report

Lakefront Heights Development Windsor, Ontario

Table of Contents

1.0	Introdu	uction 1
	1.1	References Documents2
2.0	Transp	ortation Servicing 3
	2.1	Existing Conditions
	2.2	Proposed Roadways
3.0	Sanitar	ry Servicing 4
	3.1	Existing Conditions
	3.2	Design Criteria4
	3.3	Proposed Servicing4
4.0	Stormv	vater Servicing 6
	4.1	Background Information6
	4.2	Design Criteria6
	4.3	Proposed Servicing7
5.0	Waterr	main Servicing 8
	5.1	Existing Conditions8
	5.2	Proposed Servicing8
6.0	Utilitie	s 9
	6.1	Gas9
	6.2	Bell9
	6.3	Cogeco9
	6.4	MNSi9
7.0	Conclu	sion 10

Tables

Table 1: Sanitary Sewer Design Criteria	4	1
Table 2: Storm Sewer Design Criteria	6	'n

Appendices

- A Functional Servicing Plan
- B Sanitary Sewer and Storm Sewer Design Sheets
- C Stormwater Management Report

Introduction

Dillon Consulting Limited (Dillon) was retained by Lakefront Heights Inc. to develop a functional servicing strategy for the potential development of their lands located on Wyandotte Street East, east of Clover Street, south of the existing Riverside Sportsmen Club in East Riverside, in the City of Windsor. This document outlines the servicing strategy and identifies the supporting studies and related information for the transportation, noise, sanitary, stormwater management, and watermain servicing for the site.

The development lands have been severed from the Riverside Sportsmen Club, located at 10835 Riverside Drive East, which is currently in operation as a private commercial club. The proposed development location is shown in Figure 1 below.

Figure 1: Project Site Location

The proposed development area is approximately 1.66 Ha and when fully developed, will consist of two multi-unit residential towers consisting of approximately 220 units total, and 18 attached townhome style units.

1.1 References Documents

The following documents and drawings were referenced when completing this study:

- City of Windsor Development Manual (Windsor, 2015);
- City of Windsor Sewer Atlas (City of Windsor);
- Design Guidelines for Sewage Works (MOE, 2008); and
- Windsor/Essex Region Stormwater Management Standards Manual (ERCA, 2018)

Transportation Servicing

Existing Conditions 2.1

2.0

Currently, there is no access to the development. A new access point will be required for the proposed development.

The property is bounded on the west limit by the East End Park, on the north by the Riverside Sportsmen Club, on the east by vacant lands and on the south by Wyandotte Street East.

Proposed Roadways 2.2

The proposed access points to this development will be from a single driveway onto Wyandotte Street East.

The internal parking lot layout will service the proposed buildings. The parking lot will be designed to satisfy the City of Windsor's Development Manual. The proposed layout is shown in Figure 2 (in Appendix A)

The pavement structure of the proposed parking lot will be consistent with geotechnical recommendations.

A Traffic Impact Study (TIS) has been completed for this development by Dillon. Any impacts to the existing road network have been identified in that report and will be incorporated in the detailed design of this development.

Sanitary Servicing

Existing Conditions 3.1

3.0

Currently, there are no sanitary services to this property. An existing 250 mm diameter PVC sanitary sewer is located along Wyandotte Street East, and turns north at the Clover Ave intersection. Additionally, there is development to the south of Wyandotte Street East currently in progress which will consist of a 250 mm diameter PVC sanitary sewer on Lublin Avenue.

Design Criteria 3.2

The following sanitary sewer design criteria for this property are outlined in Table 1.0. The design criteria were established by the City of Windsor's Development Manual (2015).

Criteria City of Windsor Development Manual Hydraulic Sewer Sizing Manning's Equation Minimum Sewer Size (mm) 250 diameter Minimum Cover Depth (m) 2.4 90m preferred, maximum 120m Maximum Manhole Spacing 0.013 Manning's Roughness Coefficient 'n' Velocity: Minimum (m/s) 0.75 3.00 Maximum (m/s) Manning's Roughness Coefficient 0.013 (Smooth Wall Pipe) 0.156 L/s/ha Extraneous Flow **Peaking Factor** 6 (population under 1,000) Population Density For: High Density Residential 2 person/unit Average Daily Sewage 0.0042 L/second/capita Sewer Surcharging Maximum Hydraulic Grade Line

Table 1: Sanitary Sewer Design Criteria

Proposed Servicing 3.3

Figure 2 (in Appendix A) illustrates the proposed sanitary servicing layout. The sanitary servicing for the proposed development is as follows:

 All sanitary flows from within the proposed development will be conveyed via the local sanitary sewer constructed within the proposed internal parking lot.

• It is proposed that the local sanitary sewers that run east down Wyandotte Street East will be utilized via a single outlet to the proposed sanitary sewer on Lublin Avenue which will be installed prior to the development of this site.

The sanitary sewer functional design sheets are provided in Appendix B and assumes a full development build out. Criteria used in flow calculation is listed in Table 1.0.

The existing invert elevations of the sanitary trunk sewer allows for 2.4 m cover at the top end of the internal sewers. All serviced buildings where the bottom of the footings are below the sewer and the hydraulic grade line is less than 300 mm below the basement floor elevation, shall be equipped with a sewage ejector pump. It is recommended that all serviced buildings install sewage ejector pumps to provide a hydraulic break between the sewer and the building lot.

The future detailed design of the sanitary sewers and services are to be consistent with the requirements of the Ontario Building Code.

Stormwater Servicing

Background Information 4.1

An existing 1350 mm diameter RCP stormwater trunk sewer is located along the Wyandotte Street East right-of-way and ultimately discharges to the North Neighbourhood Pond. Currently there are no stormwater services to this property, however, this site has been allocated to the North Neighbourhood Pond.

Design Criteria 4.2

4.0

The following storm sewer design criteria for this property are outlined in Table 2.0. The design criteria were established by the City of Windsor's Development Manual (2015).

Table 2: Storm Sewer Design Criteria

Criteria	City of Windsor Development Manual				
Design Method	Rational Method				
Standard Return Period	1 in 5 years Storm Event				
	$I = a / (t+b)^{c}$				
Rainfall Intensity	a=1259.0				
,	b=8.80				
	c=0.838				
Minimum Cover Depth (m)	1.00				
Manning's Roughness Coefficient 'n'	0.013				
Velocity:					
Minimum (m/s)	0.76				
Maximum (m/s)	3.00				
Maximum Manhole Spacing	675mm diameter or less: 120 metres				
	750 to 1350mm diameter: 150 metres				
Inlet Times: Residential	20 minutes (maximum)				
Runoff Coefficients:					
Roofs	0.95				
Road Pavements	0.90				
Paved Driveways and Patios	0.90				
Lawn – Sandy Soil	0.15				
Lawn – Clay Soil	0.20				
Parks	0.20				
Gravel Lots	0.55				
Minimum Manhole Size	1200mm				
Pipe Material Main Lines	450mm or less: PVC or Reinforced Concrete				
F	Greater than 450mm: Reinforced Concrete (65-D min.)				

Note: The detailed design for stormwater servicing will be completed with a dual drainage hydrodynamic model and will adhere to ERCA Guidelines.

Proposed Servicing 4.3

It is proposed that the site's stormwater outlet be provided to the existing storm sewer on Wyandotte Street East, and discharged into the North Neighbourhood Pond located to the southwest of the proposed development.

Refer to Figure 2 (in Appendix A) for the proposed servicing. The stormwater servicing for the proposed development is as follows:

- The proposed buildings and parking lot will be serviced through a new storm sewer network constructed within the proposed parking lot;
- The proposed storm sewer network will outlet into the existing storm sewer on Wyandotte Street East, and discharge into the North Neighbourhood Pond located to the southwest of the proposed development. Refer to the Stormwater Management Report in Appendix C for details; and
- Stormwater quality control will be provided in the proposed stormwater management pond and parking lot surface storage. Details are provided in Appendix C.

Watermain Servicing

Existing Conditions 5.1

5.0

The site is not currently connected to a watermain service. There is an existing 400 mm diameter PVC watermain located to the south of the proposed development within the north side of the Wyandotte Street East right-of-way. The existing watermain is currently equipped with a stub which will be used to service the property.

Proposed Servicing 5.2

Figure 2 (in Appendix A) illustrates the proposed watermain servicing. The watermain servicing for the proposed development is as follows:

- The internal development will be serviced by a new 200 mm diameter watermain constructed within the proposed internal parking lot network; and
- The new watermain will connect to the existing 400 mm diameter main located within the Wyandotte Street East right-of-way.

No pressure/flow testing has been completed for this development. During detailed design, pressure testing of the existing watermain on Wyandotte Street East may be required.

The detailed design of the watermain services are to be consistent with the requirements of the City of Windsor and will be coordinated with Windsor Utilities Commissions (W.U.C.) during the detailed design process. Placement of hydrants for adequate fire protection will be completed during detailed design.

Utilities 6.0

Gas 6.1

Existing natural gas service is available along Wyandotte Street East. During detailed design, future conversation on loading will be required with Enbridge.

Bell 6.2

Existing Bell service is available along Wyandotte Street East. During detailed design, future conversation will be required for servicing the proposed development.

Cogeco 6.3

Existing Cogeco service is available along Wyandotte Street East. During detailed design, future conversation will be required for servicing the proposed development.

MNSi 6.4

Existing MNSi service is available along Wyandotte Street East. During detailed design, future conversation will be required for servicing the proposed development.

Conclusion

7.0

The review of the adjacent services is found to be sufficient for the proposed development. The design of the proposed internal services will be finalized during detailed design.

Yours sincerely,

DILLON CONSULTING LIMITED

Kyle Edmunds, P.Eng. Project Engineer

Kailee Dickson, EIT Civil Designer

Kailu Dickson

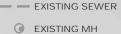
Appendix A

Functional Servicing Plan

FUNCTIONAL SERVICING PLAN FIGURE 1

PROPOSED PAVEMENT

PROPOSED LANDSCAPE



SCALE: 1:500

PROPOSED G PROPOSED SANITARY MH

c:\pw working directory\projects 2021\32kyd\dms32529\21-2104 sportsman club-servicing plan.dwg
June, 14, 2024 10:57 AM

SOURCE: THE COUNTY OF ESSEX INTERACTIVE MAPPING (2019)

MAP/DRAWING INFORMATION
THIS DRAWING IS FOR INFORMATION PURPOSES ONLY. ALL
DIMENSIONS AND BOUNDARY INFORMATION SHOULD BE
VERIFIED BY AN O.L.S PRIOR TO CONSTRUCTION. CREATED BY: KYD CHECKED BY: KNE DESIGNED BY: KYD

G PROPOSED STORM MH

PROJECT: 21-2104

STATUS: FINAL

DATE: 06/14/2024

Appendix B

Sanitary Sewer and Storm Sewer Design Sheets

RIVERSIDE SPORTSMEN CLUB **SANITARY SEWER DESIGN SHEET**

Project Name: Riverside Sportsmen Club

Project No: 21-1691

The Peaking Factor was derived:

Using Harmon Formula=

From a Table= N (Y or N) Residential Average Daily Flow= 363 L/Cap.D Outlet Invert Elevation= 173.295

Mannings 'n'= 0.013

City of Windsor Value from table=

Peak Extraneous Flow= 0.156 L/Ha.S

Total Area= 1.899

City of Windsor				'	value iroi	n table=	0.000									Total Area=	1.099		
Lo	cation					F	low Characteristics							Sewer Design/Profile					
	LOCA	TION	INDIVI	DUAL	CUMU	LATIVE	PEAKING	POP FLOW	PEAK EXTR.	PEAK DESIGN									
ROAD/STN	FROM	TO	POP	AREA	POP	AREA	FACTOR	Q(p)	FLOW Q(i)	FLOW Q(d)	CAPACITY	LENGTH		SLOPE	UPPER	LOWER	FALL		DROP IN LOWER
	MH	MH		(ha.)		(ha.)	M	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	INVERT (m)	INVERT (m)	(m)	(m/s)	MANHOLE (m)
Parking Lot	Α	В	440	0.99	440	0.99	6.000	11.088	0.154	11.24	59.47	41.3	250	1.00	174.334	173.921	0.413	1.21	0.000
Parking Lot	В	С	12	0.43	452	1.42	6.000	11.390	0.222	11.61	36.66	30.0	250	0.38	173.921	173.807	0.114	0.75	0.000
Behind Homes	D	С	12	0.10	12	0.10	6.000	0.302	0.016	0.32	59.47	59.7	250	1.00	174.404	173.807	0.597	1.21	0.000
Behind Homes	E	С	12	0.10	12	0.10	6.000	0.302	0.016	0.32	59.47	55.0	250	1.00	174.357	173.807	0.550	1.21	0.000
Parking Lot	С	F	0	0.08	476	1.71	6.000	11.995	0.267	12.26	36.66	36.3	250	0.38	173.807	173.669	0.138	0.75	0.000

Project Name: Riverside Sportsmen Club Project Number: 21-2104

RIVERSIDE SPORTSMEN CLUB STORM SEWER DESIGN SHEET

Intensity Option # 1

1) Intensity (i) = $a/(t+b)^c$ 2) Intensity (i) = a*t^b 3) Insert Intensity

Manning's n = 0.013

a= 1259.000 **b=** 8.800 **c=** 0.838 Based on 1:5 Year Storm Event Windsor, Ontario Outlet Invert Elevation= 172.055 b= Total Area (ha)=

Loca	ation						0.000							Sewer I	Design / Pro	ofile			
From MH	To MH	Area (ha)	Run. Coef.	2.78AC	Accum. 2.78AC	T of In (min)	T of F (min)	T of Conc. (min)	Intensity (mm/hr)	Exp. Flow (L/s)	Capacity (L/s)	Velocity (m/s)	Length (m)	Pipe Dia. (mm)	Slope (%)	Invert Up MH	Invert Low MH	Fall (m)	Drop Across Low MH (m)
MH 1	MH 2	0.25	0.90	0.63	0.63	15.0	0.60	15.00	88.40	56.11	84.09	0.76	27.2	375	0.23	172.529	172.466	0.06	0.025
MH 2	MH 3	0.32	0.90	0.81	1.44		1.42	15.60	86.59	124.76	172.02	0.79	67.6	525	0.16	172.441	172.333	0.11	0.025
MH 3	MH 7	0.10	0.90	0.24	1.68		0.76	17.01	82.58	138.97	182.46	0.84	38.5	525	0.18	172.308	172.239	0.07	0.025
MH 4	MH 6	0.30	0.90	0.76	0.76	15.0	1.40	15.00	88.40	66.97	84.09	0.76	63.9	375	0.23	172.500	172.353	0.15	0.025
MH 5	MH 6	0.27	0.90	0.67	0.67	15.0	0.76	15.00	88.40	59.08	84.09	0.76	34.7	375	0.23	172.433	172.353	0.08	0.025
MH 6	MH 7	0.13	0.90	0.32	1.75		0.91	16.40	84.27	147.17	187.46	0.87	47.1	525	0.19	172.328	172.239	0.09	0.025
MH 7	MH 8	0.17	0.90	0.43	3.86		0.92	17.78	80.60	310.78	401.40	0.91	50.0	750	0.13	172.214	172.149	0.06	0.025
MH 8	6R4007	0.12	0.90	0.31	4.17		0.55	18.69	78.34	326.54	416.55	0.94	31.3	750	0.14	172.124	172.080	0.04	0.025

Appendix C

Stormwater Management Report

Lakefront Heights Inc.

Official Plan and Zoning By-Law Amendments

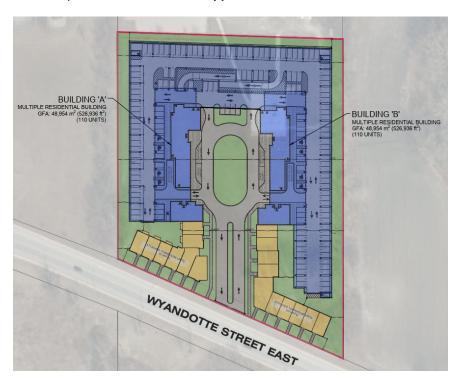
Stormwater Management Report Lakefront Heights Development Windsor, Ontario

Table of Contents

1.0	Introdu	ction 1
	1.1	Background1
	1.2	Stormwater Management Design Criteria2
	1.2.1	Quantity Control
	1.2.2	Quality Control
2.0	Existing	Conditions 3
	2.1	Existing Drainage3
	2.2	Site Soils3
	2.3	Tailwater Conditions
3.0	Propose	ed Condition Analysis 5
	3.1	Proposed Condition Hydrologic Assessment
	3.2	Allowable Release Rate5
	3.3	Preliminary SWM Strategy6
	3.4	Storm Sewer Design6
	3.5	Quantity Control6
	3.6	Quality Control7
	3.7	Downstream Capacity Analysis
4.0	Conclus	ions 9
	Figures	
	Figure 1	: Proposed Development1
	Figure 2	: Tailwater time-series for various storm events4
	Tables	
	Table 1:	Post Development Sub-Catchment Parameters for the Site5
	Table 2:	Onsite Storage Depth, Storage Volume and Release for Various Storms7

Appendices

- A Lakefront Heights Concept Plan
- B Modelling Input and Output Reports
- C Details of OGS Unit
- D Wyandotte Street East Trunk Sewer Profile Comparison



Introduction

1.0

Dillon Consulting Limited (Dillon) has been retained by Lakefront Heights Inc. to prepare a Stormwater Management Report in support of its Official Plan (OPA) and Zoning By-law Amendments (ZBA) for its proposed development to the south of the existing Riverside Sportsman Club. As shown in Figure 1, the proposed development is located in the neighborhood of East Riverside, in the City of Windsor, north of Wyandotte Street East.

The proposed development area is approximately 1.66 ha and is currently vacant undeveloped land, with the exception of a concrete pad located at the northeast corner of the site. The proposed development consists of a combination of multi-storey and attached townhome style residential buildings. The site plan for the proposed development can be found in **Appendix A**.

Figure 1: Proposed Development

Background 1.1

In 2018, Dillon completed a stormwater assessment study of the North Neighbourhood Development for the City of Windsor (the City). The details of the previously completed study can be found in the North Neighbourhood Development Storm Water Management Analysis Report (Dillon 2018). The current development was part of the ultimate future build out area considered in the 2018 study. As such, the currently proposed development was assessed to the North Neighbourhood Stormwater Management

Pond and the Wyandotte Street East Trunk Sewer.

Stormwater Management Design Criteria 1.2

Design criteria for the stormwater design and servicing were based on review of the following reference documents:

- Stormwater Management Planning and Design Manual (Ministry of the Environment [MECP], 2003);
- Windsor/Essex Region Stormwater Management Standards Manual (WERSMSM) (2018); and
- North Neighbourhood Stormwater Management Study (Dillon, 2018).

The corresponding criteria are described below.

1.2.1 **Quantity Control**

The proposed SWM plan is designed at a minimum to provide active storage volume for the 100-Year, 24 hour storm and the 100-Year, 4 hour storm.

1.2.1.1 Minor System Conveyance

The proposed site storm sewers are designed to accommodate the peak flows from the 5-Year design storm event.

Major System Conveyance 1.2.1.2

The proposed major system is designed to limit the maximum surface ponding depths on the proposed roadways to 0.30 m.

1.2.1.3 **Climate Change Resiliency Assessment**

The regional SWM facility is designed to accommodate the runoff generated from the Urban Stress Test design storm event without overtopping its banks.

1.2.2 **Quality Control**

On-site stormwater quality treatment will be provided using an oil-grit separator (OGS) positioned upstream of the outlet to the Wyandotte Street Trunk Storm Sewer. The OGS unit is designed to meet the Ministry of Environment, Conservation and Parks (MECP) design requirements for 70% TSS removal (normal level of protection). Additionally, the North Neighbourhood SWM facility (North Neighbourhood Pond) is designed to provide for a "Normal" Protection Level of water quality treatment to remove 70% of total suspended solids (TSS) from the proposed site runoff.

Existing Conditions 2.0

The subject property is currently vacant undeveloped land, with the exception of a concrete pad located at the northeast corner of the site. The site is bound by the Riverside Sportsman Club to the north, Wyandotte Street East to the south, and vacant land to the east and East End Park to the west.

Existing Drainage 2.1

Based on the available topographic information, runoff from the existing site generally travels south towards Wyandotte Street East as shallow surface flow. Flow from the site is entering the Wyandotte Street East Trunk Sewer where it ultimately discharges to the North Neighbourhood Pond. No external drainage areas contribute runoff to the site.

Site Soils 2.2

Based on the information presented on the Soil Map of Essex County, the site soils of the site consist of Clyde Clay and Colwood Fine Sandy Loam. These soils are classified in the Ontario Agricultural Atlas as Hydrologic Soil Group (HSG) D and C, respectively.

Tailwater Conditions 2.3

The impact of downstream tailwater conditions occurring against the site's stormwater management system was accounted for in this analysis. Head time-series were extracted from the North Neighbourhood Model for the 5-Year, 4 hour; 100-Year, 4 hour; 100-Year, 24 hour and UST events, for the node MH 6R4007. These time-series were then applied to the outfall node to represent tail water conditions.

The head time series used to simulate tailwater conditions for different storm events are shown below in Figure 2.

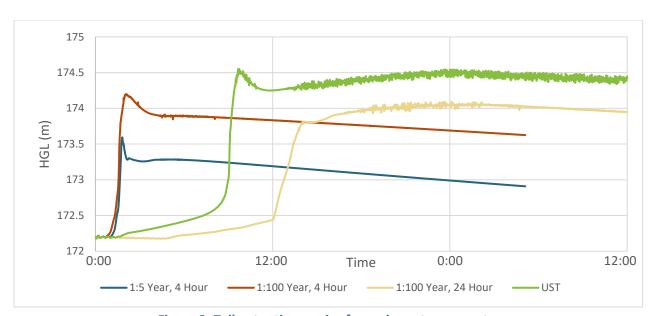


Figure 2: Tailwater time-series for various storm events

Proposed Condition Analysis

3.0

The proposed site development is 1.66 ha site area and consists of a combination of multi-storey and townhome residential buildings. All runoff from the proposed development is discharged to the North Neighbourhood Pond through the Wyandotte Street East Trunk Sewer. The site plan for the proposed development can be found in Appendix A.

Proposed Condition Hydrologic Assessment 3.1

Sub catchment attributes for the proposed development model were selected based on the ERCA SWM standard and are summarized in Table 1 below. Additional details of the modelling parameters and other model details for proposed conditions are provided in Appendix B.

Table 1: Post Development Sub-Catchment Parameters for the Site

Attribute	Development
Land Use	Residential
Area (ha)	1.66
Flow Length¹ (m)	155
Imperviousness (%)	90
Slope (%)	1.5
Manning's n Impervious	0.013
Manning's n Pervious	0.24
Depression Storage Impervious (mm)	2.5
Depression Storage Pervious (mm)	7.5
Soil Capillary Suction Head (mm) ²	215
Hydraulic Conductivity (mm/hr) ²	1.15
Initial Soil Moisture Deficit (frac.) ²	0.235

¹Maximum flow path to outlet

Allowable Release Rate 3.2

The subject development lands were assessed to the Wyandotte Street East Trunk Sewer in the 2018 North Neighbourhood Study. In the 2018 report, the development lands were included with an

²Weighted average for soil type C &D

imperviousness percentage of 37% flowing unrestricted through overland flow to the Wyandotte Street East Trunk Sewer.

As such, the allowable release rate of the proposed site was estimated considering a percentage imperviousness of 37% in the modelling analysis. The estimated maximum allowable stormwater release rate for the development site is 160 L/s. This flow represents the 5-Year, 4 hour design storm event, peak flow rate from the development site using a 37% imperviousness for the site.

In order to prevent any adverse impacts on the downstream system due to the proposed development, the maximum flow rate from the site is expected to be maintained at or below the allowable release rate for all events up to and including the 100-Year event.

Preliminary SWM Strategy 3.3

A preliminary SWM strategy was developed to manage the runoff from the proposed site. The proposed strategy includes:

- An on-site storm sewer to convey the minor flows from all storms up to and including 5-Year design storm event;
- Catchbasin pre-treatment measures to capture oil and suspended sediment at the source;
- An oil/grit separator to provide water quality treatment;
- A gravity outlet with a flap gate to discharge the proposed site runoff to the Wyandotte Street East Trunk Sewer under high tailwater conditions; and
- On-site temporary stormwater storage to attenuate the peak discharges.

Storm Sewer Design 3.4

The proposed site storm sewers are designed to convey the site runoff to the Wyandotte Street East Trunk Sewer by gravity. The storm sewers are designed to accommodate the peak discharges from the 5-Year storm event. The peak discharge from the proposed storm sewer to the Wyandotte Street East Trunk Sewer is restricted by an orifice that limits the site discharge to the allowable release rate of 160 L/s.

Quantity Control 3.5

Stormwater storage on site is proposed by a combination of underground storage and above ground storage at catch-basin (CB) locations. A 750 mm diameter pipe and 230 mm circular orifice is proposed from the site to the outlet node (6R4007) to restrict the flow within the allowable rate.

The parking lot areas will be graded to include local sags at catch basin locations to allow for surface ponding during large storm events. Storage in the storm sewers and sewer structures has been taken into account in this analysis and incorporated into the stage-storage curve used to simulate on-site storage in the model.

The proposed condition model was simulated for different storm events. A summary of the release rates and the on-site storage volumes for various storm event simulations is provided in Table 2.

Table 2: Onsite Storage Depth, Storage Volume and Release for Various Storms

Storm Type	Release Rate (L/s)	Storage Volume (m³)
5-Year, 4 hour Chicago	130	390
100-Year, 4 hour Chicago	160	670
100-Year, 24 hour SCS Type-II	120	390
Urban Stress Test	120	990

Shown in Table 2, it is observed that the release rates for all simulated storm events is within the allowable limit of 160 L/s. It is also observed in the 100-Year, 4 hour storm (Chicago) event is the governing 100-Year return period event regarding storage requirements. The maximum volume of storm water estimated to be stored on-site is 670 m³, during the governing 100-Year simulation. The details of the model inputs and outputs are provided in Appendix B.

The Urban Stress Test (UST) storm event was also simulated to account for impacts of climate change. The estimated storage volume during the UST event simulation, shown in Table 2, is 990 m³, which is higher than the maximum estimated volume during the governing 100-Year simulation.

The maximum depth of storage on-site during the 100-year and UST events will be confirmed during detailed design stage.

The flow from the site is conveyed via a 750 mm diameter conduit to the outfall (6R3879) of the Wyandotte Street East Trunk Sewer. Additionally, a 230 mm circular orifice is required to restrict the flow within the allowable limit.

Quality Control

3.6

Water quality treatment is provided by a multi-component approach that includes:

- Pre-treatment measures in the proposed site catch basins to capture TSS; and
- An oil/grit separator (OGS) to meet the design TSS removal rate.

Pre-treatment devices will be selected during detailed design but must be designed to convey flows under freezing conditions. The site will require an OGS unit to meet Normal Protection Level water quality treatment to remove 70% TSS from the proposed site runoff. The FD-5HC model supplied by ADS, or approved equivalent is recommended for this site. The details of this OGS sizing is provided in Appendix C.

Downstream Capacity Analysis 3.7

The PCSWMM model developed as part of the North Neighbourhood Stormwater Management Study (Dillon, 2018) was utilized to determine upstream and downstream impacts on the Wyandotte Street East Trunk Sewer. The model was simulated using the 5-Year, 4 hour; 100-Year 4 hour; 100-Year 24 hour and the UST design storm events, with and without the inflow from the proposed development. Comparing the HGL through the Wyandotte Street East Trunk Sewer, there was no observed increase in HGLs during the storm events.

This is understood to be because the flows from the proposed development are relatively small in comparison to the peak flows in the larger Wyandotte Street East Trunk Sewer.

Therefore, it was concluded that the release rate from the proposed site is not expected to have a significant impact on the receiving sewer system. Profiles of the Wyandotte Street East Trunk Sewer showing the HGL, with and without the new development inflow, are included in Appendix D.

Conclusions

4.0

The stormwater management design for the proposed development meets the established SWM criteria for the overall site, and no negative impacts due to the site development are anticipated in the existing system.

Based on the analysis performed, the conclusions are listed as follows:

- The allowable release rate for this proposed development is estimated to be 160 L/s. This is based on a 5-Year year pre-development release from the development area, assuming a predevelopment percentage imperviousness of 37% for the site.
- A 750 mm diameter circular pipe and 230 mm diameter circular orifice is proposed at the outlet to provide flow restriction for maintaining outflow within the allowable release rate.
- Approximately 390 m³ of underground storage is required to restrict flow from the site to the allowable release while maintaining the HGL below the road elevation for storms up to and including the 5-Year event.
- On-site storage volume of 670 m³ is required for the 100-Year event to restrict flows from the site to the allowable release rate without surface ponding exceeding 0.30 m.
- From the outlet capacity assessment analysis, no significant change in HGLs in the Wyandotte Street East Trunk Sewer, downstream of the development, is observed. Therefore, no negative impact to the hydraulic conditions of the downstream municipal sewer is expected due to the proposed development.

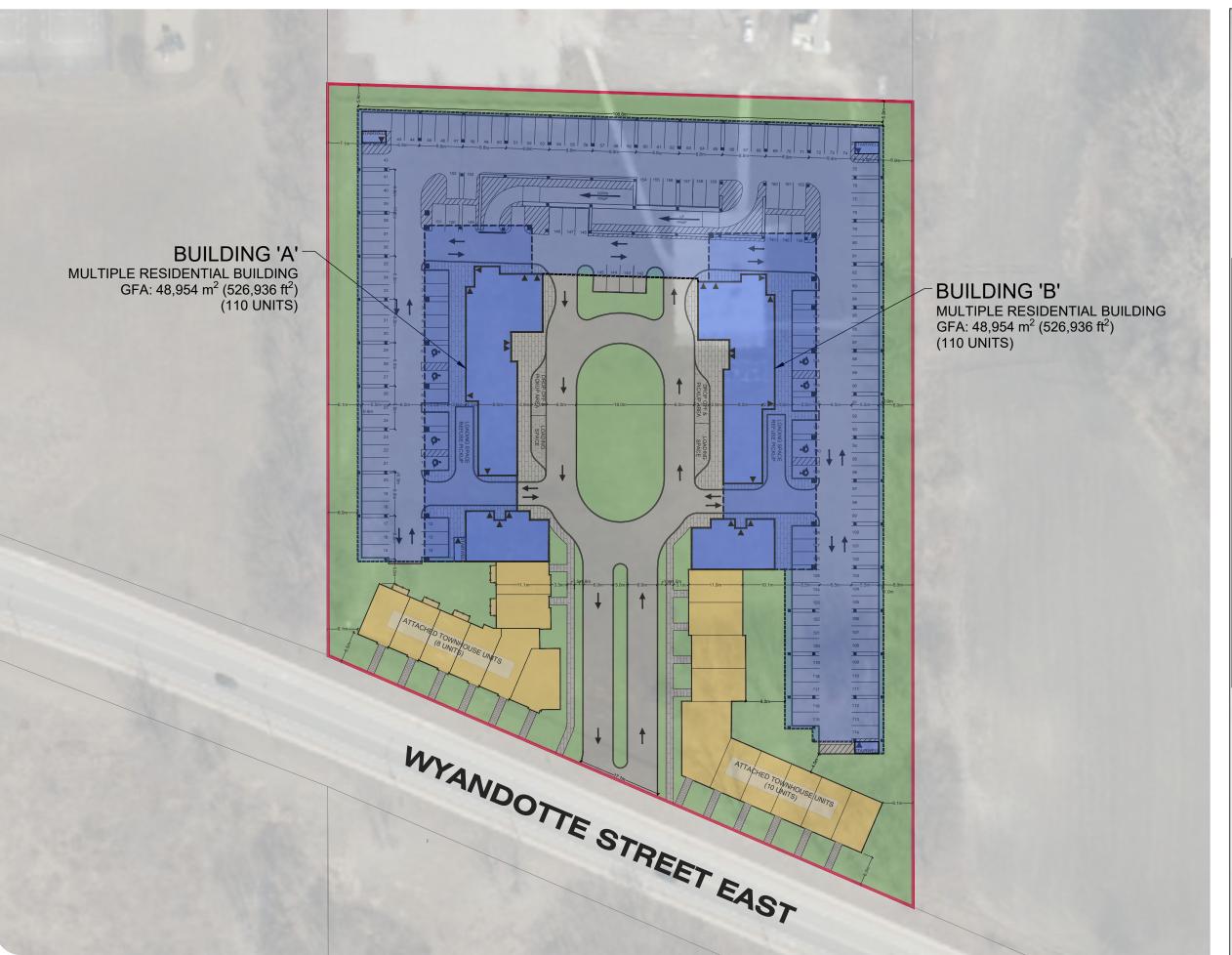
This report is respectfully submitted for review and approval. Should you have any questions, we would be pleased to discuss the results of our evaluation in further detail.

Yours sincerely,

DILLON CONSULTING LIMITED

Aakash Bagchi, P.Eng. M.Eng., Water Resources Engineer

Saranya Jeyalakshmi Water Resources Designer



Appendix A

Lakefront Heights Concept Plan

Lakefront Heights Inc.

LAKEFRONT HEIGHTS INC.

LAKEFRONT HEIGHTS DEVELOPMENT PLANNING JUSTIFICATION REPORT

CONCEPTUAL DEVELOPMENT PLAN

GROUND FLOOR - PARKING LAYOUT FIGURE 4 (a)

SUBJECT AREA (±1.66 ha / 4.11 ac)

PROPOSED LANDSCAPE

PROPOSED MULTI-UNIT RESIDENTIAL TOWERS

PROPOSED TOWNHOME ATTACHED STYLE UNITS

PROPOSED SIDEWALK

PROPOSED PAVEMENT

SITE DATA MATRIX									
	ZONING PROVISIONS	REQUIRED	PROVIDED						
1	PROJECT DESCRIPTION	N/A	RESIDENTIAL						
2	ZONING DESIGNATION	RD3.3	SITE SPECIFIC RD3.3						
3	LAND USE	N/A	RESIDENTIAL						
4	MAJOR OCCUPANCY(S)	N/A	RESIDENTIAL						
5	PERMITTED USES	MULTIPLE DWELLING	MULTIPLE DWELLING						
6	MINIMUM SITE AREA	11,680m²	16,633m²						
7	BUILDING AREA (GROUND FLOOR FOOTPRINT)	N/A	9,314.5m ²						
8	TOTAL UNITS	N/A	238						
9	LOT COVERAGE	35%	56%*						
10	MINIMUM LOT WIDTH	45.0m	129.4m						
11	MAXIMUM BUILDING HEIGHT	24.0m	44.0m*						
12	MINIMUM FRONT YARD DEPTH	N/A	6.0m						
13	MINIMUM REAR YARD DEPTH	N/A	5.0m						
14	MINIMUM SIDE YARD DEPTH	N/A	6.0m						
15	REQUIRED SPACES - STANDARD	289	307						
16	REQUIRED SPACES - ACCESSIBLE	8 (4 TYPE A AND 4 TYPE B)	16 (8 TYPE A & 8 TYPE E						
17	REQUIRED SPACES - VISITOR (15%)	44	48						
18	PARKING SPACES - TOTAL	297	323						
19	GROUND FLOOR PARKING	N/A	162						
20	SECOND FLOOR PARKING	N/A	161						
21	BICYCLE SPACES	18	23						
22	LOADING SPACES	4	4						
23	LANDSCAPED AREA - SOFT	N/A	4,871m ²						
24	LANDSCAPED AREA - HARD	N/A	1,159m ²						
25	LANDSCAPED AREA - TOTAL	35%	6,030m ² (36.2%)						
26	DWELLING UNITS PER HECTARE	180	144						

* REQUIRES SITE SPECIFIC ZONING BY-LAW AMENDMENT

SCALE: 1:750

SOURCE: COUNTY OF ESSEX AERIAL PHOTOGRAPHY (2021)

MAP/DRAWING INFORMATION
THIS DRAWING IS FOR INFORMATION PURPOSES ONLY, ALL DIMENSIONS
AND BOUNDARY INFORMATION SHOULD BE VERIFIED BY AN O.L.S PRIOR TO
CONSTRUCTION.

CREATED BY: SNP CHECKED BY: MAM DESIGNED BY: SNP

c:\pw working directory\projects 2021\32mam\dms32529\21-2104 -sportsman club - site plan.dwg
June, 14, 2024 9:39 AM

PROJECT: 21-2104

STATUS: DRAFT

DATE: 12/06/2024

Appendix B

Modelling Input and Output Reports

Lakefront Heights Inc.

Model Schematic

PCSWMM Input Report: 1:5 year 4 hour

[TITLE] ;;Project Title/Notes [OPTIONS]

;;Option Value FLOW_UNITS LPS

INFILTRATION MODIFIED_GREEN_AMPT

FLOW_ROUTING DYNWAVE LINK_OFFSETS ELEVATION

MIN_SLOPE 0
ALLOW_PONDING NO
SKIP_STEADY_STATE NO

START_DATE 10/13/2022 START_TIME 00:00:00 REPORT_START_DATE 10/13/2022 REPORT_START_TIME 00:00:00 10/14/2022 END_DATE END_TIME 00:00:00 01/01 SWEEP_START SWEEP_END 12/31 DRY_DAYS 00:01:00

 REPORT_STEP
 00:01:00

 WET_STEP
 00:05:00

 DRY_STEP
 00:05:00

ROUTING_STEP 5

THREADS

RULE_STEP 00:00:00

INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W 0.75 VARIABLE_STEP LENGTHENING_STEP 0 0 MIN_SURFAREA MAX_TRIALS 0.0015 HEAD_TOLERANCE SYS_FLOW_TOL 5 LAT_FLOW_TOL MINIMUM_STEP 0.5

6

[EVAPORATION] ;;Data Source ;;										
	0.0 NO									
[RAINGAGES] ;;Name ;;	Format									
100Y4hr_Chicago 100YrSCS 5Y4hr_Chicago UST	INTENSITY	0:15	1.0	TIME	SERIES 100					
[SUBCATCHMENTS] ;;Name ;;	Rain Gage								SnowPack	
SM1	5Y4hr_Chic									
[SUBAREAS] ;;Subcatchment ;;	-		_							
SM1	0.013									
[INFILTRATION] ;;Subcatchment ;;										
SM1	215									
[JUNCTIONS] ;;Name										
SMMH1										
[OUTFALLS] ;;Name	Elevation						te To			
;; SMOF1	171.755						NO			
[STORAGE] ;;Name Ksat IMD	Elev. M	MaxDepth	InitDept	h S	hape	Curve Nam	e/Params	N/A	Fevap	Psi

; ;													
SMS1	173.524	1.976	0	T	ABULAR	S	Storag	_{je}			0	0	
[CONDUITS] ;;Name ;;		То			_	1	Rou	ighness	I1	nOffset	OutOffse 	t InitFlow	MaxFlow
- SMC1	SMMH1	SMO	F1		10		0.0	13	1	73.524	173.324	0	0
[ORIFICES] ;;Name ;;	From Node				Type						Gated		2
SMO1	SMS1		 Н1								NO		
[XSECTIONS] ;;Link	-	Geom1									rrels C		
;; SMC1 SMO1	CIRCULAR	0.565 0.23		0		0		0		1			
[LOSSES] ;;Link ;;	=	Kexit	_		_		_	_					
SMC1	0				YES								
[CURVES] ;;Name ;;		X-Value											
	Storage		570 570 570 0.7 0.7 4500	- 									
[TIMESERIES] ;;Name ;;		Time 	Value										
100Y4hr_Chicago 100Y4hr_Chicago 100Y4hr_Chicago 100Y4hr_Chicago		0:00 0:15 0:30 0:45	3.95 4.87 6.36 9.19	-									

100Y4hr_Chicago	1:00	16.45
100Y4hr_Chicago	1:15	46.45
100Y4hr_Chicago	1:30	143.67
100Y4hr_Chicago	1:45	32.45
100Y4hr_Chicago	2:00	17.25
100Y4hr_Chicago	2:15	11.53
100Y4hr_Chicago	2:30	8.62
100Y4hr_Chicago	2:45	6.87
100Y4hr_Chicago	3:00	5.71
100Y4hr_Chicago	3:15	4.89
100Y4hr_Chicago	3:30	4.28
100Y4hr_Chicago	3:45	3.81
100Y4hr_Chicago	4:00	0
100YrSCS	0:00	0
100YrSCS	2:00	1.08
100YrSCS	4:00	1.62
100YrSCS	6:00	1.62
100YrSCS	8:00	2.16
100YrSCS	10:00	3.24
100YrSCS	12:00	25.92
100YrSCS	14:00	8.64
100YrSCS	16:00	3.24
100YrSCS	18:00	2.16
100YrSCS	20:00	1.62
100YrSCS	22:00	1.62
100YrSCS	24:00	1.08
5Y4hr_Chicago	0:00	2.58
5Y4hr_Chicago	0:15	3.13
5Y4hr_Chicago	0:30	4.02
5Y4hr_Chicago	0:45	5.66
5Y4hr_Chicago	1:00	9.76
5Y4hr_Chicago	1:15	26.72
5Y4hr_Chicago	1:30	88.4
5Y4hr_Chicago	1:45	18.73
5Y4hr_Chicago	2:00	10.21
5Y4hr_Chicago	2:15	6.99
5Y4hr_Chicago	2:30	5.33
5Y4hr_Chicago	2:45	4.31
5Y4hr_Chicago	3:00	3.64

5Y4hr_Chicago	3:15	3.15	
5Y4hr_Chicago	3:30	2.78	
5Y4hr_Chicago	3:45	2.49	
5Y4hr_Chicago	4:00	0	
	_		
TW_100YR_24Hr_NorthNe:	_		
TW_100YR_24Hr_NorthNe	_		
TW_100YR_24Hr_NorthNe			
TW_100YR_24Hr_NorthNe	_		
TW_100YR_24Hr_NorthNe	3		
TW_100YR_24Hr_NorthNe	_		
TW_100YR_24Hr_NorthNe			172.204269
TW_100YR_24Hr_NorthNe			172.207779
TW_100YR_24Hr_NorthNe	ighbourhood 7/7,	/2017 0:09	172.208679
TW_100YR_24Hr_NorthNe	ighbourhood 7/7,	/2017 0:10	172.210159
TW_100YR_24Hr_NorthNe:	ighbourhood 7/7,	/2017 0:11	172.212555
Too many data points	(2160 in total)		
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:01	172.199936
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:02	172.197479
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:03	172.188278
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:04	172.178711
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:05	172.181015
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:06	172.194061
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:07	172.204269
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:08	172.207779
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:09	172.208664
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:10	172.210159
TW_100YR_4Hr_NorthNeig	ghbourhood 7/7/2	2017 0:11	172.21254
Too many data points	(2160 in total)	•	
TW_5YR_4Hr_NorthNeighl	oourHood 7/7/203	17 0:01	172.199936
TW_5YR_4Hr_NorthNeighl	oourHood 7/7/203	17 0:02	172.197479
TW_5YR_4Hr_NorthNeighl	oourHood 7/7/20	17 0:03	172.188278
TW_5YR_4Hr_NorthNeighl	oourHood 7/7/20	17 0:04	172.178711
TW_5YR_4Hr_NorthNeighl	oourHood 7/7/20	17 0:05	172.181015
TW_5YR_4Hr_NorthNeighl	oourHood 7/7/202	17 0:06	172.194061
TW_5YR_4Hr_NorthNeighl			172.204269
TW_5YR_4Hr_NorthNeighl			172.207779
= 3			

```
TW_5YR_4Hr_NorthNeighbourHood 7/7/2017
                                          0:09
                                                     172.208664
TW_5YR_4Hr_NorthNeighbourHood 7/7/2017
                                          0:10
                                                     172.210159
TW_5YR_4Hr_NorthNeighbourHood 7/7/2017
                                          0:11
                                                     172.21254
Too many data points (2160 in total).
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:01
                                                 172.199936
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:02
                                                 172.197479
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:03
                                                 172.188278
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:04
                                                 172.178711
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:05
                                                 172.181015
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:06
                                                 172.194061
TW UST NorthNeighbourhood 7/7/2017
                                      0:07
                                                 172.204269
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:08
                                                 172.207779
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:09
                                                 172.208679
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:10
                                                 172.210159
TW_UST_NorthNeighbourhood 7/7/2017
                                      0:11
                                                 172.212555
Too many data points (2160 in total).
                             0:00
                                        2.41
UST
                             0:15
                                        2.43
UST
                                        2.45
UST
                             0:30
UST
                             0:45
                                        2.46
UST
                            1:00
                                        2.48
UST
                            1:15
                                        2.51
                            1:30
                                        2.53
UST
UST
                            1:45
                                        2.55
UST
                             2:00
                                        2.58
UST
                             2:15
                                        2.61
UST
                             2:30
                                        2.64
                                        2.67
UST
                             2:45
                                        2.71
UST
                             3:00
UST
                             3:15
                                        2.74
UST
                             3:30
                                        2.79
UST
                             3:45
                                        2.83
UST
                             4:00
                                        2.88
                             4:15
                                        2.94
UST
UST
                             4:30
                                        3
                             4:45
                                        3.07
UST
                             5:00
                                        3.15
UST
```

UST	5:15	3.23
UST	5:30	3.33
UST	5:45	3.45
UST	6:00	3.59
UST	6:15	3.75
UST	6:30	3.94
UST	6:45	4.18
UST	7:00	4.49
UST	7:15	4.89
UST	7:30	5.43
UST	7:45	6.2
UST	8:00	7.41
UST	8:15	9.56
UST	8:30	14.29
UST	8:45	32.01
UST	9:00	145.13
UST	9:15	48.51
UST	9:30	23.13
UST	9:45	15.08
UST	10:00	11.35
UST	10:15	9.23
UST	10:30	7.88
UST	10:45	6.94
UST	11:00	6.25
UST	11:15	5.73
UST	11:30	5.32
UST	11:45	4.99
UST	12:00	4.72
UST	12:15	4.49
UST	12:30	4.29
UST	12:45	4.12
UST	13:00	3.98
UST	13:15	3.85
UST	13:30	3.74
UST	13:45	3.63
UST	14:00	3.54
UST	14:15	3.46
UST	14:30	3.39
UST	14:45	3.32
UST	15:00	3.26
UST	15:15	3.2

UST	15:30	3.15
UST	15:45	3.1
UST	16:00	3.05
UST	16:15	3.01
UST	16:30	2.97
UST	16:45	2.93
UST	17:00	2.9
UST	17:15	2.87
UST	17:30	2.84
UST	17:45	2.81
UST	18:00	2.78
UST	18:15	2.76
UST	18:30	2.73
UST	18:45	2.71
UST	19:00	2.69
UST	19:15	2.67
UST	19:30	2.65
UST	19:45	2.63
UST	20:00	2.61
UST	20:15	2.59
UST	20:30	2.57
UST	20:45	2.56
UST	21:00	2.54
UST	21:15	2.53
UST	21:30	2.51
UST	21:45	2.5
UST	22:00	2.49
UST	22:15	2.47
UST	22:30	2.46
UST	22:45	2.45
UST	23:00	2.44
UST	23:15	2.43
UST	23:30	2.42
UST	23:45	2.41

[REPORT]

;;Reporting Options

INPUT YES

CONTROLS NO

SUBCATCHMENTS ALL

NODES ALL

LINKS ALL

[TAGS]

[MAP]	[MAP]
-------	---	-----	---

DIMENSIONS 342302.36655 4688537.6191 342475.84645 4688730.7109
UNITS Meters

[COORDINATES	,]
--------------	-----

;;Node	X-Coord	Y-Coord
;;		
SMMH1	342456.582	4688564.669
SMOF1	342457.961	4688556.396
SMS1	342448.335	4688573.265

[VERTICES]

;;Link X-Coord Y-Coord

;;-----

[POLYGONS]

;;Subcatchment	X-Coord	Y-Coord
;;		
SM1	342310.252	4688705.953
SM1	342436.212	4688721.934
SM1	342459.906	4688562.512
SM1	342328.134	4688594.746
SM1	342310.252	4688705.953

[SYMBOLS]

;;Gage X-Coord Y-Coord

;;-----

PCSWMM Post-Development Report: 1:5 year 4 hour

EPA STORM WATER MANA	GEMENT MODEL -	- VERSION	7 5.1 (Bui	ld 5.1.015)			
					_			

Element Count								
Number of rain gages								
Number of subcatchme. Number of nodes								
Number of links								
Number of pollutants Number of land uses								

Raingage Summary								
Maria	Data Garres			Data	Recordi			
Name	Data Source			Туре 	Interva			
100Y4hr_Chicago 100YrSCS	100Y4hr_Chica	igo		INTENSITY INTENSITY				
5Y4hr_Chicago	5Y4hr_Chicago)		INTENSITY				
UST	UST			INTENSITY	15 min			

Name	Area	Width	%Imperv	%Slope	Rain Gag	е	Outlet	
SM1	1.66	107.10	90.00	1.5000	5Y4hr_Ch	icago	SMS1	

Node Summary								
* * * * * * * * * * *		Т	Invert	Max.	Ponded	External		
Name	Type	_	Elev.	Depth	Area	Inflow		

SMMH1	JUNCTION	173.52	1.98	0.0
SMOF1	OUTFALL	171.75	2.13	0.0
SMS1	STORAGE	173.52	1.98	0.0

* * * * * * * * * * *

Link Summary *******

Name	From Node	To Node	Type	Length	%Slope R	oughness
SMC1	SMMH1	SMOF1	CONDUIT	10.0	2.0004	0.0130
SM01	SMS1	SMMH1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
SMC1	CIRCULAR	0.56	0.25	0.14	0.56	1	739.87

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options *********

Flow Units LPS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES

Ponding Allowed	NO
Water Quality	NO
Infiltration Method	MODIFIED_GREEN_AMPT
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	10/13/2022 00:00:00
Ending Date	10/14/2022 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:01:00
Wet Time Step	00:05:00
Dry Time Step	00:05:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m

* * * * * * * * * * * * * * * * * * * *	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.082	49.475
Evaporation Loss	0.000	0.000
Infiltration Loss	0.005	2.863
Surface Runoff	0.074	44.643
Final Storage	0.004	2.255
Continuity Error (%)	-0.577	
* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.074	0.741
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.074	0.738
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000

```
Initial Stored Volume ....
                             0.000
                                        0.000
 Final Stored Volume .....
                             0.000
                                        0.002
 Continuity Error (%) .....
                             0.008
 ******
 Time-Step Critical Elements
 ********
 Link SMC1 (23.69%)
 ********
 Highest Flow Instability Indexes
 ********
 All links are stable.
 *******
 Routing Time Step Summary
 ******
 Minimum Time Step
                            2.28 sec
 Average Time Step
                            4.57 sec
 Maximum Time Step
                            5.00 sec
 Percent in Steady State
                            -0.00
 Average Iterations per Step :
                            2.00
 Percent Not Converging
                            0.00
 Time Step Frequencies
    5.000 - 3.155 sec
                            84.63 %
    3.155 - 1.991 sec
                           15.37 %
    1.991 - 1.256 sec
                            0.00 %
    1.256 - 0.792 sec
                            0.00 %
    0.792 - 0.500 sec
                            0.00 %
 ******
 Subcatchment Runoff Summary
 *******
-----
```

Deak Runoff

Total

Total

Total

Total

Imperv

Total

Perv

Total

	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff Subcatchment LPS	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
SM1	49.48	0.00	0.00	2.86	42.51	2.13	44.64	0.74

			Average	Maximum	Maximum	Time	of Max	Reported
			Depth	Depth	HGL	Occu	rrence	Max Depth
Node	e	Type	Meters	Meters	Meters	days	hr:min	Meters
SMM	H1	JUNCTION	0.03	0.16	173.69	0	01:54	0.16
SMO	71	OUTFALL	1.04	1.04	172.80	0	00:00	1.04
SMS	1	STORAGE	0.10	1.35	174.87	0	01:54	1.29

Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error LPS LPS days hr:min 10^6 ltr 10**^**6 ltr Node Type Percent SMMH1 JUNCTION 0.00 130.51 0 01:54 0 0.738 0.000 SMOF1 OUTFALL 0.00 130.80 0 01:54 0 0.738 0.000 SMS1 STORAGE 389.54 389.54 0 01:45 0.741 0.741 0.008

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pcnt Pcnt	volume	Pcnt	Time of Max Occurrence days hr:min	Maximum Outflow LPS
SMS1	0.057	5	0 (0.386	36	0 01:54	130.51

Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt LPS LPS 10^6 ltr SMOF1 96.46 13.88 130.80 0.738 96.46 13.88 System 130.80 0.738

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Type	LPS	days hr:min	m/sec	Flow	Depth
SMC1	CONDUIT	130.80	0 01:54	2.23	0.18	0.28
SMO1	ORIFICE	130.51	0 01:54			1.00

	Adjusted			 Fract	ion of	Time	in Flo	w Clas	s	
Conduit	/Actual Length	Dry	Up Dry		Sub Crit	-	-			Inlet Ctrl
SMC1	1.00	0.03	0.00	0.00	0.00	0.00	0.00	0.97	0.00	0.00

No conduits were surcharged.

Analysis begun on: Fri Nov 18 16:37:14 2022 Analysis ended on: Fri Nov 18 16:37:14 2022

Total elapsed time: < 1 sec

PCSWMM Output Report 1:100 yr 4 hour

EPA STORM WATER MANAG	GEMENT MODEL -	VERSION	5.1 (Bui	ld 5.1.015)		
					_		

Element Count							
Number of rain gages Number of subcatchmen Number of nodes Number of links Number of pollutants Number of land uses	nts 1 3 2 0						
* * * * * * * * * * * * * * * *							
Raingage Summary *********							
Name	Data Source			Data Type	Recordi: Interva	l	
100Y4hr_Chicago 100YrSCS 5Y4hr_Chicago UST	100Y4hr_Chica 100YrSCS 5Y4hr_Chicago UST	go		INTENSITY INTENSITY INTENSITY INTENSITY	15 min 120 min 15 min		

Name	Area	Width	%Imperv		Rain Gage		Outlet
s1	1.66	107.10	90.00		100Y4hr_0		1
************ Node Summary							

Name	Туре		nvert Elev.	Max. Depth	Ponded Area	External Inflow	

2	JUNCTION	173.52	1.98	0.0
3	OUTFALL	171.75	2.13	0.0
1	STORAGE	173.52	1.98	0.0

* * * * * * * * * * *

Link Summary ******

Name	e From Node T		Type	Length	%Slope Roughnes		
2	2	3	CONDUIT	10.0	2.0004	0.0130	
1	1	2	ORIFICE				

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.		No. of Barrels	Full Flow
2	CIRCULAR	0.56	0.25	0.14	0.56	1	739.87

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options ********

Flow Units LPS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES

Ponding Allowed	NO
Water Quality	NO
Infiltration Method	MODIFIED_GREEN_AMPT
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	10/13/2022 00:00:00
Ending Date	10/14/2022 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:01:00
Wet Time Step	00:05:00
Dry Time Step	00:05:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm
Total Precipitation	0.135	81.588
Evaporation Loss	0.000	0.000
Infiltration Loss	0.005	3.079
Surface Runoff	0.127	76.709
Final Storage	0.004	2.255
Continuity Error (%)	-0.558	
*******	Volume	Volume
Flow Routing Continuity	hectare-m	10 ^ 6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.127	1.272
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.125	1.248
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
EALITCIACION DOSS	0.000	0.000

```
Initial Stored Volume ....
                             0.000
                                        0.000
 Final Stored Volume .....
                             0.001
                                        0.006
 Continuity Error (%) .....
                             1.430
 ******
 Time-Step Critical Elements
 ********
 Link 2 (20.27%)
 *******
 Highest Flow Instability Indexes
 ********
 Link 1 (50)
 Routing Time Step Summary
 ******
 Minimum Time Step
                            0.04 sec
 Average Time Step
                            4.59 sec
 Maximum Time Step
                            5.00 sec
 Percent in Steady State
                            0.00
 Average Iterations per Step :
                            2.00
 Percent Not Converging
                            0.02
 Time Step Frequencies
    5.000 - 3.155 sec
                           89.01 %
    3.155 - 1.991 sec
                           10.99 %
    1.991 - 1.256 sec
                            0.00 %
    1.256 - 0.792 sec
                            0.00 %
    0.792 - 0.500 sec
                            0.00 %
 ******
 Subcatchment Runoff Summary
 *******
-----
                      Total
                              Total
                                       Total
                                                Total
                                                        Imperv
                                                                           Total
                                                                                    Total
```

Perv

Deak Runoff

	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff Subcatchment LPS	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
S1 651.88 0.940	81.59	0.00	0.00	3.08	71.57	5.14	76.71	1.27

* * * * * * * * * * * * * * * * * *

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Max Occurrence days hr:min	Reported Max Depth Meters
2	JUNCTION	0.04	0.21	173.73	0 01:39	0.18
3 1	OUTFALL STORAGE	1.78 0.25	1.78 1.87	173.53 175.40	0 00:00 0 02:00	1.78 1.87

		Maximum	Maximum		Lateral	Total	Flow
		Lateral	Total	Time of Max	Inflow	Inflow	Balance
		Inflow	Inflow	Occurrence	Volume	Volume	Error
Node	Type	LPS	LPS	days hr:min	10 ^ 6 ltr	10^6 ltr	Percent
2	JUNCTION	0.00	155.68	0 02:00	0	1.25	-0.002
3	OUTFALL	0.00	166.39	0 01:39	0	1.25	0.000
1	STORAGE	651.88	651.88	0 01:45	1.27	1.27	1.462

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

Change White	Average Volume		Pcnt	Pcnt	Maximum Volume	Max Pcnt	Time of Max Occurrence	Maximum Outflow
Storage Unit	1000 m3 0.094	Full 9	Loss	Loss 0	1000 m3 0.672	Full 63	days hr:min 0 02:00	LPS 155.68

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
3	60.09	39.09	166.39	1.248
System	60.09	39.09	166.39	1.248

Link	Туре	Flow	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
2	CONDUIT ORIFICE	166.39 155.68	0 01:39 0 02:00	2.14	0.22	0.37

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s		
Conduit	/Actual Length	Dry	Up Dry		Sub Crit	-	-			Inlet Ctrl	
2	1.00	0.00	0.00	0.00	0.85	0.15	0.00	0.00	0.35	0.00	

No conduits were surcharged.

Analysis begun on: Fri Nov 18 16:37:36 2022 Analysis ended on: Fri Nov 18 16:37:37 2022

Total elapsed time: 00:00:01

PCSWMM Output Report: 1:100 yr 24 hour

EPA STORM WATER MANA	AGEMENT MODEL -	VERSIC	N 5.1 (Bui	ld 5.1.015	5)		
					-		

Element Count							
Number of rain gages							
Number of subcatchme Number of nodes							
Number of links							
Number of pollutants Number of land uses							

Raingage Summary							
				Data	Recordi		
Name	Data Source			Туре	Interva 		
100Y4hr_Chicago	100Y4hr_Chicag	10		INTENSITY			
100YrSCS 5Y4hr_Chicago	100YrSCS 5Y4hr_Chicago			INTENSITY INTENSITY			
UST	UST			INTENSITY			

Name	Area	Width	n %Imperv	%Slope	Rain Gag	e 	Outlet
S1		107.10	90.00	1.5000	100YrSCS		1

Node Summary							
* * * * * * * * * *			Invert	Max.	Ponded	External	
Name	Туре		Elev.	Max. Depth	Area	Inflow	

2	JUNCTION	173.52	1.98	0.0
3	OUTFALL	171.75	2.13	0.0
1	STORAGE	173.52	1.98	0.0

* * * * * * * * * * *

Link Summary ******

Name	From Node	To Node	Type	Length	%Slope R	oughness
2	2	3	CONDUIT	10.0	2.0004	0.0130
1	1	2	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.		No. of Barrels	Full Flow
2	CIRCULAR	0.56	0.25	0.14	0.56	1	739.87

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options ********

Flow Units LPS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES

Ponding Allowed	NO
Water Quality	NO
Infiltration Method	MODIFIED_GREEN_AMPT
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	10/13/2022 00:00:00
Ending Date	10/14/2022 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:01:00
Wet Time Step	00:05:00
Dry Time Step	00:05:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m

		<u>F</u>
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.176	105.840
Evaporation Loss	0.000	0.000
Infiltration Loss	0.009	5.373
Surface Runoff	0.161	97.227
Final Storage	0.006	3.364
Continuity Error (%)	-0.117	
******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.161	1.613
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.137	1.367
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Evaporación Lobb	0.000	0.000

Volume

Depth

```
Initial Stored Volume ....
                             0.000
                                        0.001
                                        0.246
 Final Stored Volume .....
                             0.025
 Continuity Error (%) .....
                             0.086
 ******
 Time-Step Critical Elements
 ********
 Link 2 (63.81%)
 *******
 Highest Flow Instability Indexes
 ********
 Link 1 (13)
 Routing Time Step Summary
 ******
 Minimum Time Step
                            0.34 sec
 Average Time Step
                            3.59 sec
 Maximum Time Step
                            5.00 sec
 Percent in Steady State
                            0.00
 Average Iterations per Step :
                            2.15
 Percent Not Converging
                            0.00
 Time Step Frequencies
    5.000 - 3.155 sec
                            36.19 %
    3.155 - 1.991 sec
                            63.81 %
    1.991 - 1.256 sec
                            0.00 %
    1.256 - 0.792 sec
                            0.00 %
    0.792 - 0.500 sec
                            0.00 %
 ******
 Subcatchment Runoff Summary
 *******
-----
                      Total
                              Total
                                       Total
                                                Total
                                                        Imperv
                                                                           Total
                                                                                    Total
                                                                   Perv
```

Deak Runoff

	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff Subcatchment LPS	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
s1 117.91 0.919	105.84	0.00	0.00	5.37	92.42	4.81	97.23	1.61

* * * * * * * * * * * * * * * * * *

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Max Occurrence days hr:min	Reported Max Depth Meters
2 3	JUNCTION OUTFALL	0.31 2.19	0.44	173.97 173.95	0 12:44 0 00:00	0.43
1	STORAGE	0.42	1.39	174.92	0 14:00	1.39

		Maximum	Maximum		Lateral	Total	Flow
		Lateral	Total	Time of Max	Inflow	Inflow	Balance
		Inflow	Inflow	Occurrence	Volume	Volume	Error
Node	Type	LPS	LPS	days hr:min	10 ^ 6 ltr	10^6 ltr	Percent
2	JUNCTION	0.00	117.91	0 14:00	0	1.37	0.038
3	OUTFALL	0.00	117.91	0 14:00	0	1.37	0.000
1	STORAGE	117.91	117.91	0 14:00	1.61	1.61	0.117

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

	Average	Avg	Evap Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt Pcnt	Volume	Pcnt	Occurrence	Outflow
Storage Unit	1000 m3	Full	Loss Loss	1000 m3	Full	days hr:min	LPS
1	0.206	19	0 0	0.386	36	0 14:00	117.91

	Flow	Avg	Max	Total	
	Freq	Flow	Flow	Volume	
Outfall Node	Pcnt	LPS	LPS	10^6 ltr	
3	63.86	33.82	117.91	1.367	
System	63.86	33.82	117.91	1.367	

Link	Туре	Flow	Time of Max Occurrence days hr:min	Veloc	Max/ Full Flow	Max/ Full Depth
2	CONDUIT ORIFICE	117.91 117.91	0 14:00 0 14:00	0.51	0.16	0.89

	Adjusted			 Fract	Fraction of Time in Flow Class						
Conduit	/Actual Length	Dry	-		Sub Crit	-	-				
2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	

Hours Hours

------ Hours Full ------ Above Full Capacity
Conduit Both Ends Upstream Dnstream Normal Flow Limited

2 0.01 0.01 24.00 0.01 0.01

Analysis begun on: Fri Nov 18 16:38:06 2022 Analysis ended on: Fri Nov 18 16:38:06 2022

Total elapsed time: < 1 sec

PCSWMM Output Report: Urban Stress Test (UST)

EPA STORM WATER MANA	GEMENT MODEL -	VERSION	5.1 (Bui	ld 5.1.015)		
					-		
* * * * * * * * * * * *							
Element Count							
Number of rain gages Number of subcatchme Number of nodes Number of links Number of pollutants Number of land uses	nts 1 3 2 0						

Name	Data Source			Data Type	Recordir Interval	L	
100Y4hr_Chicago 100YrSCS 5Y4hr_Chicago UST	100Y4hr_Chica 100YrSCS 5Y4hr_Chicago			INTENSITY INTENSITY INTENSITY INTENSITY	120 min. 15 min.	•	

Name	Area	Width	%Imperv	%Slope 	Rain Gage	e 	Outlet
S1	1.66	107.10	90.00	1.5000	UST		1

Node Summary ********					_		
Name	Туре		nvert Elev.	Max. I Depth	Ponded Area	External Inflow	

2	JUNCTION	173.52	1.98	0.0
3	OUTFALL	171.75	2.13	0.0
1	STORAGE	173.52	1.98	0.0

* * * * * * * * * * *

Link Summary ******

Name	From Node	To Node	Type	Length	%Slope R	oughness
2	2	3	CONDUIT	10.0	2.0004	0.0130
1	1	2	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.		No. of Barrels	Full Flow
2	CIRCULAR	0.56	0.25	0.14	0.56	1	739.87

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options ********

Flow Units LPS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES

Ponding Allowed	NO
Water Quality	NO
Infiltration Method	MODIFIED_GREEN_AMPT
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	10/13/2022 00:00:00
Ending Date	10/14/2022 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:01:00
Wet Time Step	00:05:00
Dry Time Step	00:05:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.249	149.985
Evaporation Loss	0.000	0.000
Infiltration Loss	0.011	6.509
Surface Runoff	0.233	140.077
Final Storage	0.007	3.942
Continuity Error (%)	-0.362	
*****	77 a 1 a	77.a J
	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.232	2.324
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.193	1.935
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000

```
Initial Stored Volume ....
                             0.000
                                         0.001
 Final Stored Volume .....
                             0.039
                                         0.388
 Continuity Error (%) .....
                             0.110
 *******
 Time-Step Critical Elements
 ********
 None
 ********
 Highest Flow Instability Indexes
 ********
 Link 1 (14)
 ******
 Routing Time Step Summary
 ******
 Minimum Time Step
                            4.50 sec
 Average Time Step
                            5.00 sec
 Maximum Time Step
                            5.00 sec
 Percent in Steady State
                            0.00
 Average Iterations per Step :
                            2.29
 Percent Not Converging
                            0.03
 Time Step Frequencies
    5.000 - 3.155 sec
                           100.00 %
    3.155 - 1.991 sec
                            0.00 %
    1.991 - 1.256 sec
                            0.00 %
    1.256 - 0.792 sec
                            0.00 %
    0.792 - 0.500 sec
                            0.00 %
 ******
 Subcatchment Runoff Summary
 *******
-----
                      Total
                               Total
                                        Total
                                                 Total
                                                         Imperv
                                                                           Total
                                                                                     Total
                                                                   Perv
```

Deak Runoff

	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff Subcatchment LPS	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
S1 659.75 0.934	149.98	0.00	0.00	6.51	132.33	7.74	140.08	2.33

* * * * * * * * * * * * * * * * * *

		Average Depth	Maximum Depth	Maximum HGL	Time of Max Occurrence	Reported Max Depth
Node	Type	Meters	Meters	мeters	days hr:min	Max Depth Meters
2	JUNCTION	0.68	0.95	174.47	0 08:34	0.93
3	OUTFALL	2.69	2.69	174.45	0 00:00	2.69
1	STORAGE	0.81	1.96	175.48	0 09:41	1.96

		Maximum	Maximum		Lateral	Total	Flow
		Lateral	Total	Time of Max	Inflow	Inflow	Balance
		Inflow	Inflow	Occurrence	Volume	Volume	Error
Node	Type	LPS	LPS	days hr:min	10^6 ltr	10 ^ 6 ltr	Percent
2	JUNCTION	0.00	121.44	0 09:41	0	1.94	0.085
3	OUTFALL	0.00	121.44	0 09:41	0	1.93	0.000
1	STORAGE	659.75	659.75	0 09:15	2.32	2.32	0.094

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Type	Surcharged	Meters	Meters
2	JUNCTION	15.99	0.383	1.028

***** Node Flooding Summary

No nodes were flooded.

Storage Volume Summary *****

Storage Unit	Average Volume 1000 m3	Pcnt	Evap Pcnt Loss		Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow LPS
1	0.338	32	0	0	0.986	93	0 09:41	121.44

****** Outfall Loading Summary ******

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10 ^ 6 ltr
3	64.27	34.84	121.44	1.935

System 64.27 34.84 121.44 1.935

* * * * * * * * * * * * * * * * * * *

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Type	LPS	days hr:min	m/sec	Flow	Depth
2	CONDUIT	121.44	0 09:41	0.48	0.16	1.00
1	ORIFICE	121.44	0 09:41			1.00

Adjusted ------ Fraction of Time in Flow Class

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
	1 00				1 00					0.00
∠	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
2	15.99	15.99	24.00	0.01	0.01

Analysis begun on: Fri Nov 18 16:37:55 2022

Analysis ended on: Fri Nov 18 16:37:55 2022

Total elapsed time: < 1 sec

Appendix C

Details of OGS Unit

Lakefront Heights Inc.

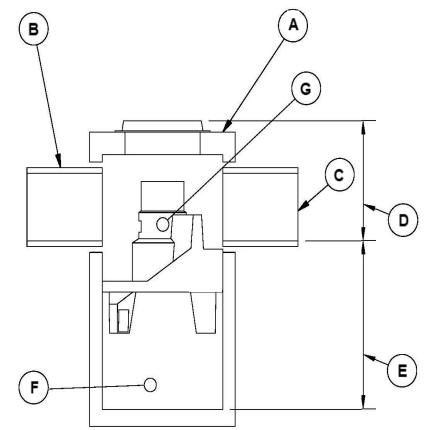
ADS OGS Sizing Summary

Project Name: Riverside Sportsman Club Development

Consulting Engineer: Dillon Consulting

Location: Windsor, ON

Sizing Completed By: C. Neath Email: cody.neath@ads-pipe.com


Treatment Requirements					
Treatment Goal: Normal (MOE)					
Selected Parameters: 70% TSS 90% Volume					
Selected Unit:	FD-5HC				

Summary of Results						
Model	TSS Removal	Volume Treated				
FD-4HC	59.0%	>90%				
FD-5HC	72.0%	>90%				
FD-6HC	79.0%	>90%				
FD-8HC	84.0%	>90%				
FD-10HC	87.0%	>90%				

FD-5HC Specification					
Unit Diameter (A):	1,500 mm				
Inlet Pipe Diameter (B):	300 mm				
Outlet Pipe Diameter (C):	300 mm				
Height, T/G to Outlet Invert (D):	2000 mm				
Height, Outlet Invert to Sump (E):	1780 mm				
Sediment Storage Capacity (F):	1.29 m³				
Oil Storage Capacity (G):	1,135 L				
Recommended Sediment Depth for Maintenance:	475 mm				
Max. Pipe Diameter:	600 mm				
Peak Flow Capacity:	566 L/s				

Site Elevations:				
Rim Elevation:	100.00			
Inlet Pipe Elevation:	98.00			
Outlet Pipe Elevation:	98.00			

Site Details					
Site Area:	1.66 ha				
% Impervious:	90%				
Rational C:	0.84				
Rainfall Station:	Windsor, ONT				
Particle Size Distribution:	Fine				
Peak Flowrate:	160 L/s				

Notes:

Removal efficiencies are based on NJDEP Test Protocols and independently verified.

All units supplied by ADS have numerous local, provincial, and international certifications (copies of which can be provided upon request). The design engineer is responsible for ensuring compliance with applicable regulations.

Project Name: Riverside Sportsman Club Development

Consulting Engineer: Dillon Consulting Location: Windsor, ON

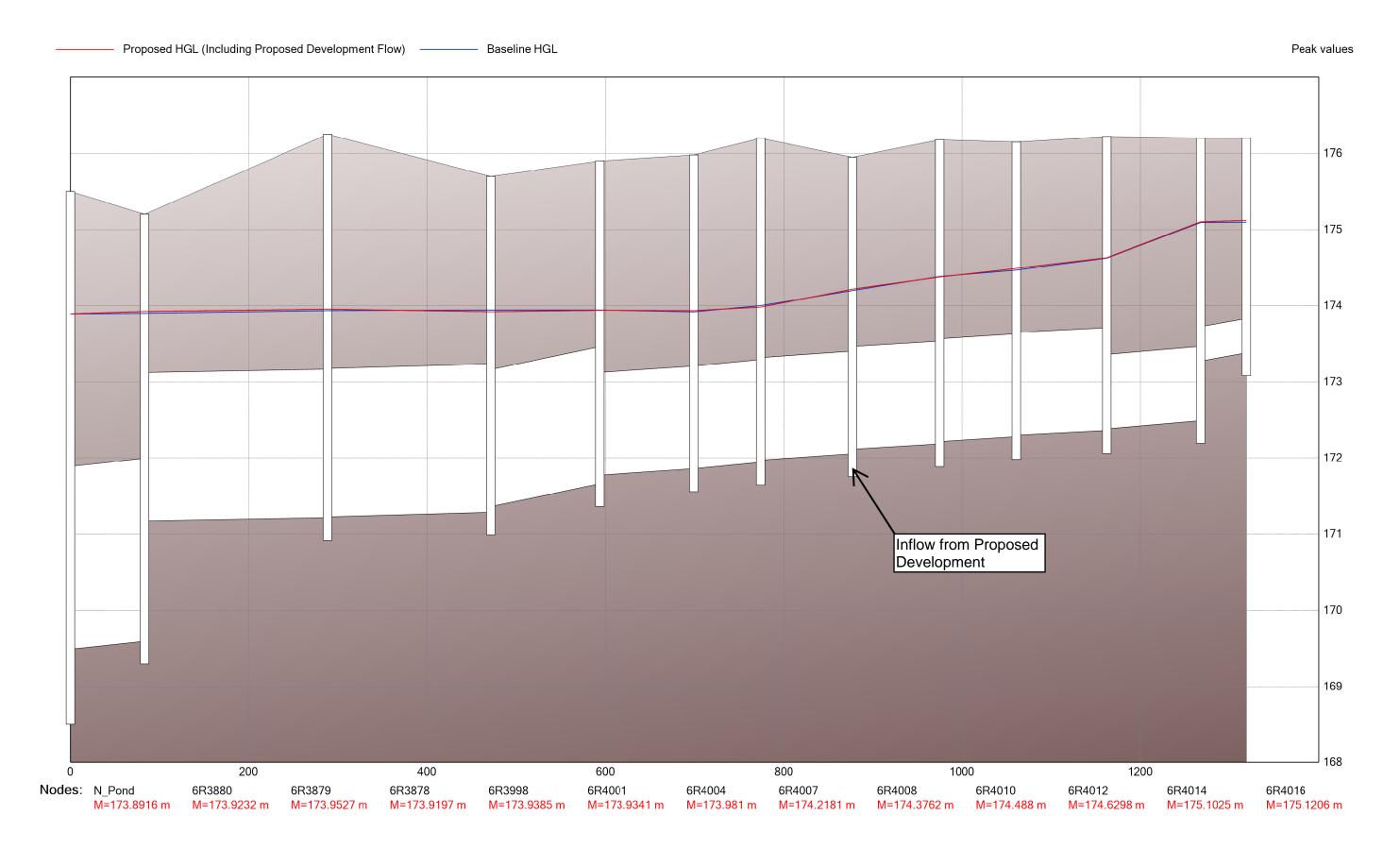
Net Annual Removal Efficiency Summary: FD-5HC

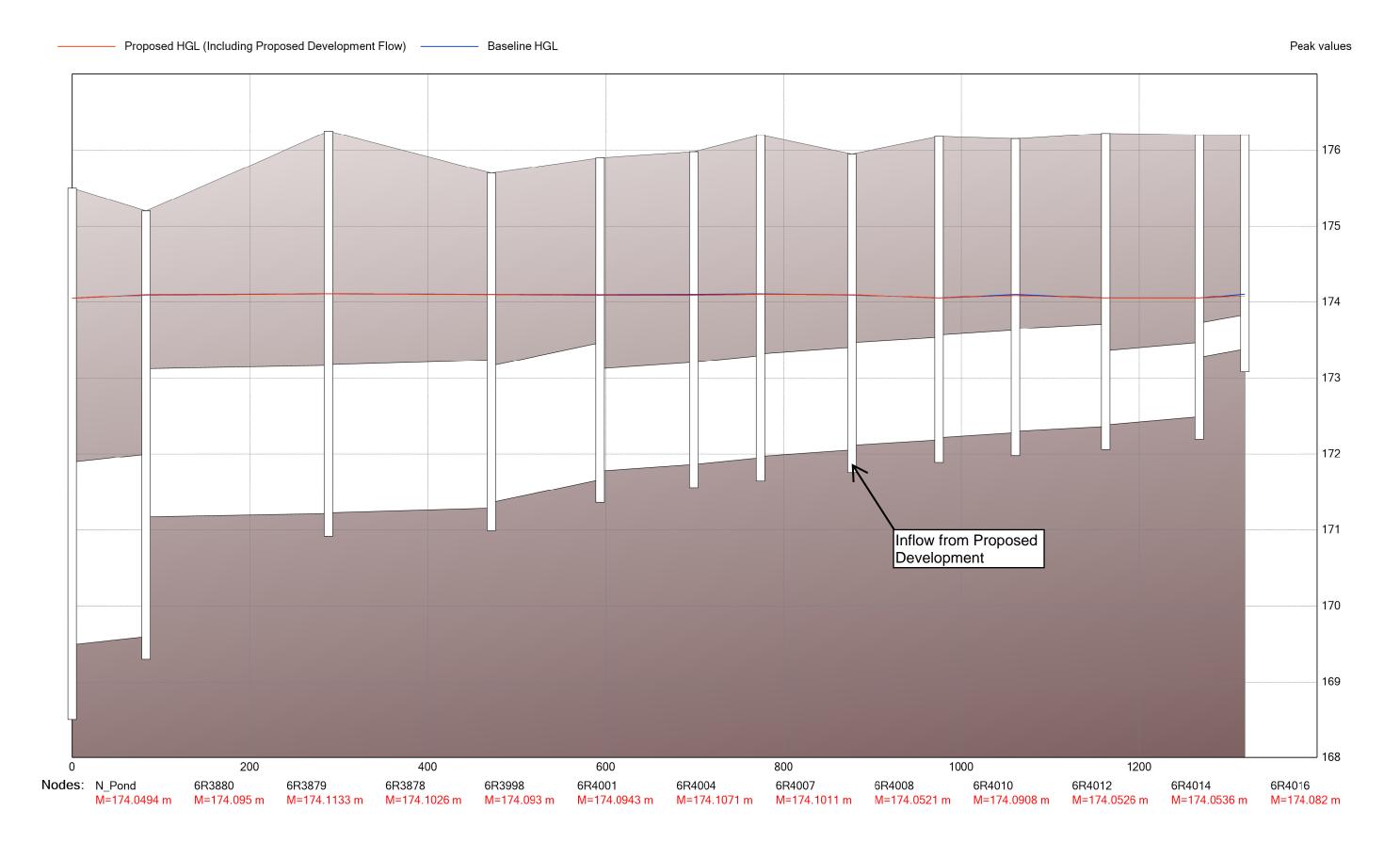
Rainfall Intensity ⁽¹⁾	Rational Equation Flowrate	Surface Loading Rate	Fraction of Rainfall ⁽¹⁾	FD-5HC Removal Efficiency	Weighted Net- Annual Removal Efficiency
mm/hr	L/s	L/min/m ²	%	%	%
3.00	11.6	395	13.2%	87%	11.4%
4.00	15.5	526	9.6%	84%	8.1%
5.00	19.4	658	7.5%	83%	6.2%
6.00	23.2	789	6.0%	81%	4.9%
7.00	27.1	921	4.8%	80%	3.8%
8.00	31.0	1052	4.1%	79%	3.2%
9.00	34.9	1184	3.6%	78%	2.8%
10.00	38.7	1315	3.2%	78%	2.5%
11.00	42.6	1447	2.8%	77%	2.2%
12.00	46.5	1578	2.5%	76%	1.9%
15.00	58.1	1973	6.6%	75%	4.9%
20.00	77.5	2630	8.3%	73%	6.0%
25.00	96.8	3288	5.8%	71%	4.1%
30.00	116.2	3945	4.6%	70%	3.2%
35.00	135.6	4603	3.8%	69%	2.6%
40.00	154.9	5260	2.9%	68%	2.0%
45.00	174.3	5918	2.4%	67%	1.6%
50.00	193.7	6576	1.8%	0%	0.0%
65.00	251.8	8548	6.6%	0%	0.0%
_					
	Total Net Annual Removal Efficiency:				
	Total Runoff Volume Treated				

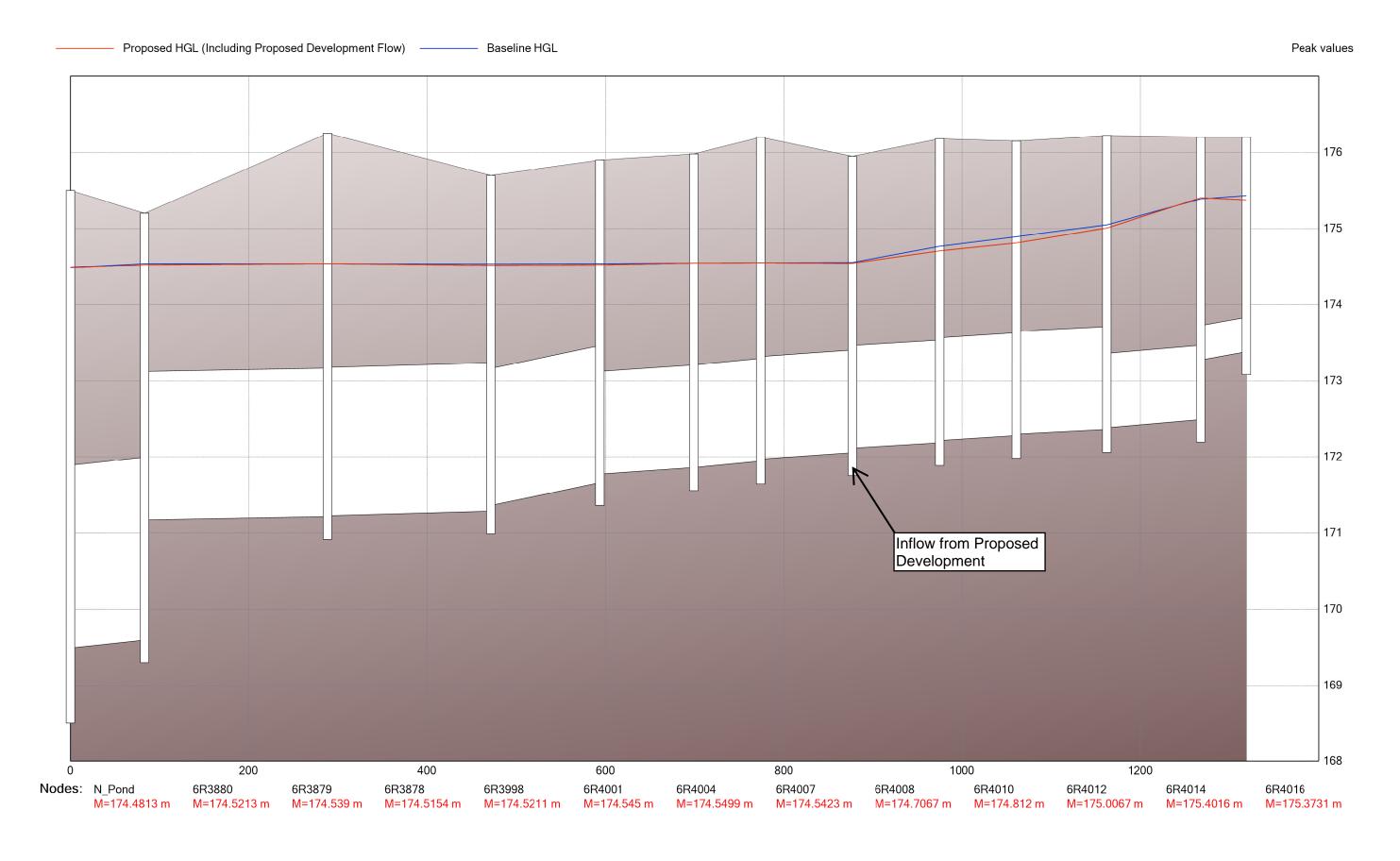
Notes:


- (1) Based on Windsor/Essex Region Stormwater Manual 2018, Table 3.4.1.5
- (2) Based on third party verified data and appoximating the removal of a PSD similar to the STC Fine distribution

Appendix D


Wyandotte Street East Trunk Sewer Profile Comparison


Wyandotte Street East Trunk Sewer HGL Profile Comparison (1:5 year 4 hour)


Wyandotte Street East Trunk Sewer HGL Profile Comparison (1:100 year 4 hour)

Wyandotte Street East Trunk Sewer HGL Profile Comparison (1:100 year 24 hour)

Wyandotte Street East Trunk Sewer HGL Profile Comparison (UST)

